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4
Protein Folding I:
Size Scaling of Time

Conceptual Outline

The simplest question about dynamics—how long does a process take?—
becomes particularly relevant when the time may be so long that the process cannot
happen at all. A fundamental problem associated with the dynamics of protein fold-
ing is understanding how a system of many interacting elements can reach a desired
structure in a reasonable time. In this chapter, we discuss the parallel-processing
idea for resolving this problem; kinetic pathways will be considered in the next chap-
ter. Parallel processing and interdependence are at odds and must be balanced in the
design of complex systems.

We use finite-size Ising type models to explore the nature of interactions
that can allow a system to relax in a time that grows less than exponentially in the size
of the system. These models illustrate various ways to realize the parallel-processing
idea.

The simplest idealization of parallel processing is the case of completely
independent spins. We discuss a two-spin model as a first example of how such a
system relaxes.

Various homogeneous models illustrate some of the properties that enable
systems to relax in a time that grows no more than a power law in the system size.
These include ideal parallel processing, and nucleation and growth of a stable state
from a metastable state. The models also illustrate cases where exponential growth
in the relaxation time can prevent systems from relaxing.

Inhomogeneous models extend the range of possibilities for interaction ar-
chitectures that still allow a reasonable relaxation time. Among these are space and
time partitioning and preselected initial conditions. However, inhomogeneous long-
range interactions generally lead to an exponential growth of relaxation time with
system size.
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❚ 4 . 2 ❚

❚ 4 . 1 ❚
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The Protein-Folding Problem

One of the simplest questions we can ask about the dynamics of a complex system is,
How long does a process take? In some cases this question presumes that we have an
understanding of the initial and final state of the process. In other cases we are look-
ing for a characteristic time scale of dynamic change. For a complex system,a partic-
ular process may not occur in any reasonable amount of time. The time that a dy-
namic process takes is of central importance when a system has an identifiable
function or purpose. We will consider this in the context of proteins, for which this
question is a fundamental issue in understanding molecular function in biological
cells.

We begin by describing the structure of proteins, starting from their “primary
structure.” Proteins are molecules formed out of long chains of, typically, twenty dif-
ferent kinds of amino acids. Amino acids can exist as separate molecules in water, but
are constructed so that they can be covalently bonded in a linear chain by removal of
one water molecule per bond (Fig. 4.1.1). In general,molecules formed as long chains
of molecular units are called polymers. Proteins,RNA and DNA,as well as other types
of biological molecules (e.g., polysaccharides) are polymers. In biological cells, pro-
teins are formed in a linear chain by transcription from RNA templates that are them-
selves t ranscribed from DNA. The sequence of amino acids forming the protein is
called its primary structure (Fig. 4.1.2). The active form of proteins (more specifically

4.1
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Figure 4.1.1 Illustration of the atomic
composition of an amino acid. The usual
notation for carbon (C), oxygen (O), ni-
trogen (N) and hydrogen (H) is used. R
stands for a radical that is generally a
hydrocarbon chain and may contain hy-
drocarbon rings. It is different for each
of the distinct amino acids, and is the
difference between them. The bottom
figure is a chain of amino acids formed
by removing a single water molecule
and bonding one nitrogen to the car-
bon of the next amino acid. The
sequence of amino acids is the
primary structure of the pro-
tein (see Fig. 4.1.2). ❚
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Common Amino Acids
Name Notation Name Notation
Glycine (gly, G) Cysteine (cys, C)
Alanine (ala, A) Methionine (met, M)
Valine (val, V) Asparagine (asn, N)
Leucine (leu, L) Glutamine (gln, Q)
Isoleucine (ile, I) Aspartic acid (asp, D)
Phenylalanine (phe, F) Glutamic acid (glu, E)
Tyrosine (tyr, Y) Lysine (lys, K)
Tryptophan (trp, W) Arginine (arg, R)
Serine (ser, S) Histidine (his, H)
Threonine (thr, T) Proline (pro, P)

Figure 4.1.2 Amino acid sequence of the protein acetylcholinesterase — its primary struc-
ture. A list of common amino acids and their commonly used three-letter and one-letter no-
tation is attached. ❚

04adBARYAM_29412  3/10/02 10:37 AM  Page 422



Th e  p ro t e i n - fo l d i n g  p ro b l e m 423

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 423
Title: Dynamics Complex Systems Short / Normal / Long

globular proteins) is, however, a tightly bound three-dimensional (3-d) structure
(Fig. 4.1.3) with active sites on the surface. The active sites serve enzymatic roles,con-
trolling chemical reactions in the cell. The transformation of the linear protein chain
to the enzymatically active 3-d structure is known as protein folding. The 3-d struc-
ture arises because of additional bonding between the amino acids of the chain. These
bonds are characteristically weaker than the covalent bonds along the chain.They in-
clude hydrogen bonds, van der Waals bonds and a few covalent sulfur-sulfur
(disulfide) bonds. The relative weakness of the bonds responsible for the 3-d struc-
ture makes the distinction between the primary and 3-d structure meaningful.

The 3-d structure of proteins can be further analyzed in terms of secondary, ter-
tiary and,sometimes, quaternary structure. These describe levels of spatial organiza-
tion between individual amino acids and the complete 3-d structure.A plot of the pro-
tein chain backbone in space (Fig. 4.1.3 (b)) generally reveals two kinds of amino acid

(a)

(b)

F i g u re 4 . 1 . 3 T h re e -
dimensional structure of
the protein acetylchol-
inesterase. The top pic-
ture is constructed using
space-filling balls that
schematically portray the
electron density of each
atom. The bottom illus-
tration is a simplified ver-
sion showing only the
backbone of the protein.
Helical segments ( -he-
lices) and regions of par-
allel chains ( -sheets)
are visible. They are illus-
trated as ribbons to dis-
tinguish them from the
connecting regions of the
chain (turns). The -he-
lices, -sheets and turns
constitute the secondary
structure of the protein.
(Rendered on a Macintosh
using RasMol [developed
by Roger Sayle] and a
National Institutes of
Health protein databank
(PDB) file) ❚
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bonding structures known as -helix and -sheet. The -helix consists of a single-
chain helix, where each amino acid forms a hydrogen bond to the fourth amino acid
along the chain. Each hydrogen bond attaches the N-H end of one amino acid with
the C-OH end of another, resulting in 3.6 amino acids per helix turn. In this structure
all such hydrogen bonds are formed, except at the ends of the helix. Thus, from the
point of view of the primary chain (and without consideration of the radicals that dis-
tinguish different amino acids),this is a low-energy structure. There is a second nat-
ural way to provide hydrogen bonding. Placing two chains, or two segments of the
same chain, parallel or antiparallel to each other allows a chain of hydrogen bonds.
This can be extended on both sides by adding chains in a two-dimensional fashion to
form a planar structure that provides complete hydrogen bonds everywhere, except at
the edges.This is the -sheet arrangement. In addition to the -helix and -sheet struc-
tu res there are also segm ents of the pro tei n ,c a ll ed tu rn s , that con n ect different - h elix
and -sheet structures. The number of amino acids along a single -helix typically
ranges between ten and twenty-five (three to seven turns), and the number in a sin-
gle strand of a -sheet is less, only five to ten. The total number of amino acids in a
region of -sheet can be as high as fifty, divided into three to eight strands. The 3-d
structure of a protein described in terms of segments of -helix and -sheet is known
as the secon d a ry stru ctu re of the pro tei n . The nu m ber of d i f ferent secon d a ry - s tru cture
elements in a protein ranges from a few up to, possibly, fifty. When there are many sec-
ondary structural elements they are further grouped into intermediate structural el-
ements. The complete 3-d structure of an individual amino acid chain is known as its
tertiary structure. Several chains may be combined together to form a larger molecu-
lar aggregate that constitutes a functioning enzyme. The collective structure of the
chains is the enzyme’s quaternary structure. This describes the hierarchically subdi-
vided structure of a protein. The number of components at each level of hierarchy is
consistent with the generalized 7±2 rule discussed in Chapter 2. This rule is expected
to apply to proteins or other complex systems that cannot be subdivided or modified
locally without significant change in their global properties.

Protein folding is the transformation of a linear protein chain to the 3-d struc-
ture. The problem of understanding protein folding has achieved a separate existence
from the problem of describing protein function in the cell. Many proteins can be un-
folded and refolded reversibly in a test tube (in vitro) separate from other molecules
that might otherwise be involved in the protein folding in the cell (in vivo). Various
additives to the solution cause the protein to unfold or refold. Protein folding has at-
tained a central significance in the effort to understand the molecular biology of the
cell, because it is a key to understanding how the linear DNA code is converted into
cellular function—as implemented by active enzymes. The 3-d structure of the pro-
tein is the form in which they perform enzymatic tasks.

Protein folding is an unsolved problem. What form will the solution of this prob-
lem take? One prospect is that it will be possible to predict the 3-d structure from a
specified amino-acid sequence. The process of prediction may result from a complete
set of rules that describe how par ticular sequences fold. Alternatively, the prediction
may require a large-scale computer simulation of the dynamical process of folding.
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Most researchers studying protein folding are concerned with determining or pre-
dicting the 3-d structure without describing the dynamics. Our concern is with the
dynamics in a generalized context that applies to many complex systems.

From early on in the discussion of the protein-folding problem, it has been pos-
sible to separate from the explicit protein-folding problem an implicit problem that
begs for a fundamental resolution. How, in principle, can protein folding occur?
Consider a system composed of elements, where each element may be found in any
of several states.A complete specification of the state of all the elements describes the
conformation of the system. The number of possible conformations of the system
grows exponentially with the number of elements. We require the system to reach a
unique conformation—the folded structure. We may presume for now that the folded
structure is the lowest energy conformation of the system. The amount of time nec-
essary for the system to explore all possible conformations to find the lowest-energy
one grows exponentially with system size. As discussed in the following paragraphs,
this is impossible. Therefore we ask, How does a protein know where to go in the space
of conformations to reach the folded structure?

We can adopt some very rough approximations to estimate how much time it
would take for a system to explore all possible conformations, when the number of
conformations grows exponentially with system size. Let us assume that there are 2N

conformations, where N is the size of the system—e.g.,the number of amino acids in
a protein. Assume further that the system spends only one atomic oscillation time in
each conformation before moving on to the next one. This is a low estimate,so our
result will be a reasonable lower bound on the exploration time.An atomic oscillation
time in a material is approximately 10−12 sec. We should increase this by at least an or-
der of magnitude, because we are talking about a whole amino acid moving rather
than a single atom. Our conclusions, however, won’t be sensitive to this distinction.
The time to relax would be 2N10−12 sec,if we assume optimistically that each possible
state is visited exactly once before the right arrangement is found.

A protein folds in, of order, 1 second. For conformation space exploration to
work, we would have to rest rict the number of amino acids to be smaller than that
given by the equation:

2N10−12 sec = 1 sec (4.1.1)

or N = 40. Real proteins are formed from chains that typically have 100 to 1000 amino
acids. Even if we were to just double our limit from 40 to 80 amino acids, we would
have a conformation exploration time of 1012 seconds or 32,000 years. The many or-
ders of magnitude that separate a reasonable result from this simple estimate suggests
that there must be something fundamentally wrong with our way of thinking about
the problem as an exploration of possible conformations.Figuring out what is a rea-
sonable picture,and providing justification for it,is the fundamental protein-folding
problem.

The fundamental protein-folding problem applies to other complex systems as
well.A complex system always has a large set of possible conformations. The dynam-
ics of a complex system takes it from one type of conformation to another type of
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conformation. By the argument presented above, the dynamics cannot explore all
possible conformations in order to reach the final conformation. This applies to the
dynamics of self-organization, adaptation or function. We can consider neural net-
works (Chapters 2 and 3) as a second example. Three relevant dynamic processes are
the dynamics by which the neural network is formed during physiological develop-
ment,the dynamics by which it adapts (is trained,learns) and the dynamics by which
it responds to external information. All of these cause the neural network to attain one
of a small set of conformations,selected from all of the possible conformations of the
system. This implies that it does not explore all alternatives before realizing its final
form. Similar constraints apply to the dynamics of other complex systems.

Because the fundamental protein-folding problem exists on a very general level,
it is reasonable to look at generic models to identify where a solution might exist. Two
concepts have been articulated as responsible for the success of biological protein
folding—parallel processing and kinetic pathways. The concept of parallel processing
suggests, quite reasonably, that more than one process of exploration may be done at
once. This can occur ifand only ifthe processes are in some sense independent. If par-
allel processing works then, naively speaking, each amino acid can do its own explo-
ration and the process will take very little time. In contrast to this picture,the idea of
kinetic pathways suggests that a protein starts from a class of conformations that nat-
urally falls down in energy directly toward the folded structure. There are large barri-
ers to other conformations and there is no complete phase space exploration. In this
picture there is no need for the folded structure to be the lowest energy conforma-
tion—it just has to be the lowest among the accessible conformations.One way to en-
visage this is as water flowing through a riverbed, confined by river banks, rather than
exploring all possible routes to the sea.

Our objective is to add to these ideas some concrete analysis of simple models
that provide an understanding of how parallel processing and kinetic pathways may
work. In this chapter we discuss the concept of parallel processing, or independent re-
laxation, by developing a series of simple models. Section 4.2 describes the approxi-
mations that will be used. Section 4.3 describes a decoupled two-variable model. The
main discussion is divided into homogeneous models in Section 4.4 and inhomoge-
neous models in Section 4.5.In the next chapter we discuss the kinetic aspects of poly-
mer collapse from an expanded to a compact structure as a first test of how kinetics
may play a role in protein folding. It is to be expected that the evolving biology of or-
ganisms will take advantage of all possible “tricks” that enable proteins to fold in ac-
ceptable time. Therefore it is likely that both parallel processing and kinetic effects do
play a role.By understanding the possible generic scenarios that enable rapid folding,
we are likely to gain insight into the mechanisms that are actually used.

As we discuss various models of parallel processing we should keep in mind that
we are not concerned with arbitrary physical systems, but rather with complex sys-
tems. As discussed in S ection 1.3, a complex system is indivisible, its parts are inter-
dependent. In the case of proteins this means that the complete primary structure—
the sequence of amino acids—is important in determining its 3-d structure. The 3-d
structure is sometimes, but not always,affected by changing a single amino acid. It is
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likely to be affected by changing two of them. The resulting modifications of the 3-d
structure are not localized at the position of the changed amino acids. Both the lack
of effect of changing one amino acid,and the various effects of changing more amino
acids suggest that the 3-d structure is determined by a strong coupling between the
amino acids, rather than b eing solely a local effect. These observations should limit
the applicability of parallel processing, because such a structural interdependence im-
plies that the dynamics of the protein cannot be separated into completely indepen-
dent parts. Thus, we recognize that the complexity of the system does not naturally
lead to an assumption of parallel processing. It is this conflict of the desire to enable
rapid dynamics through independence, with the need to promote interdependence,
which makes the question of time scale interesting. There is a natural connection be-
tween this discussion and the discussion of substructure in Chapter 2. There we
showed how functional interdependence arose from a balance between strong and
weak interactions in a hierarchy of subsystems. This balance can also be relevant to
the problem of achieving essentially parallel yet interdependent dynamics.

Before proceeding, we restate the formal protein-folding problem in a concrete
fashion:the objective is to demonstrate that protein folding is consistent with a model
where the basic scaling of the relaxation time is reduced from an exponential increase
as a function of system size, to no more than a power-law increase. As can be readily
verified, for 1000 amino acids, the relaxation time of a system where ∼ N z is not a
fundamental problem when z < 4. Our discussion of various models in this chapter
suggests a framework in which a detailed understanding of the parallel minimization
of different coordinates can be further developed. Each model is analyzed to obtain
the scaling of the dynamic relaxation (folding) time with the size of the system (chain
length).

Introduction to the Models

We will study the time scale of relaxation dynamics of various model systems as con-
ceptual prototypes of protein folding. Our analysis of the models will make use of the
formalism and concepts of Section 1.4 and Section 1.6.A review is recommended. We
assume that relaxation to equilibrium is complete and that the desired folded struc-
ture is the energy minimum (ground state) over the conformation space. The con-
formation of the protein chain is described by a set of variables {si} that are the local
relative coordinates of amino acids—specifically dihedral angles (Fig. 4.2.1). These
variables, which are continuous variables, have two or more discrete values at which
they attain a local minimum in energy. The local minima are separated by energy bar-
riers. Formal results do not depend in an essential way on the number of local min-
ima for each variable. Thus, it is assumed that each variable si is a two-state system
(Section 1.4), where the two local minima are denoted by si = ±1.

A model of protein folding using binary variables to describe the protein confor-
mation is not as farfetched as it may sound.On the other hand, one should not be con-
vinced that it is the true protein-folding problem. Protein conformational changes do
arise largely from changes in the dihedral angles between bonds (Fig. 4.2.1). The

4.2
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energy required to change the dihedral angle is small enough to be affected by the sec-
ondary bonding between amino acids. This energy is much smaller than the energy
required to change bond lengths,which are very rigid,or bond-to-bond angles, which
are less rigid than bond lengths but more rigid than dihedral angles. As shown in
Fig. 4.2.1, there are two dihedral angles that specify the relative amino acid coordi-
nates. The values taken by the dihedral angles vary along the amino acid chain. They
are different for different amino acids, and different for the same amino acid in dif-
ferent locations.

It is revealing to plot the distribution of dihedral angles found in proteins. The
scatter plot in Fig. 4.2.2 shows that the values of the dihedral angles cluster around
two pairs of values. The plot suggests that it is possible,as a first approximation, to de-
fine the conformation of the protein by which cluster a particular amino acid belongs
to. It might be suggested that the binary model is correct, by claiming that the vari-
able si only indicates that a particular pair of dihedral angles is closer to one of the two
aggregation points. However, this is not strictly correct, since it is conceivable that a
protein conformation can change significantly without changing any of the binary
variables defined in this way.

For our purposes, we will consider a specification of the variables {si} to be a
complete description of the conformation of the protein, except for the irrelevant ro-
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Figure 4.2.1 Illustration of the dihedral angles and These coordinates are largely re-
sponsible for the variation in protein chain conformation. Changing a single dihedral angle
is achieved by rotating all of the protein from one end up to a selected backbone atom. This
part of the protein is rotated around the bond that goes from the selected atom to the next
along the chain. The rotation does not affect bond lengths or bond-to-bond angles. It does
affect the relative orientation of the two bonds on either side of the bond that is the rota-
tion axis. ❚
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tational and translational degrees of freedom of the whole protein. The potential en-
ergy, E({si}), of the protein is a function of the values of all the variables. By redefin-
ing the variables si → − si , when necessary, we let the minimum energy conformation
be si = −1. Furthermore, for most of the discussion, we assume that the unfolded ini-
tial state consists of all si = +1. We could also assume that the unfolded conformation
is one of many possible disordered states obtained by randomly picking si = ±1. The
folding would then be a disorder-to-order transition.

The potential energy of the system E({si}) models the actual physical energy aris-
ing from atomic interactions, or, more properly, from the interaction between elec-
trons and nuclei, where the nuclear positions are assumed to be fixed and the elec-
trons are treated quantum mechanically. The potential energy is assumed to be
evaluated at the particular conformation specified by {si}. It is the potential energy
rather than the total energy, because the kinetic energy of atomic motion is not in-
cluded. Since a protein is in a water environment at non-zero temperature, the
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Figure 4.2.2 Scatter plot of the dihedral angle coordinates (Fig. 4.2.1) of each amino acid
found along the protein acetylcholinesterase (Figs. 4.1.2–4.1.3). This is called a
Ramachandran plot. The coordinates are seen to cluster in two groups. The clustering sug-
gests that it is reasonable to represent the coordinates of the protein using binary variables
that specify which of the two clusters a particular dihedral angle pair is found in. The two co-
ordinates correspond to -helix and -sheet regions of the protein. The more widely scattered
points typically correspond to the amino acid glycine which has a hydrogen atom as a radi-
cal and therefore has fewer constraints on its conformation. (Angles were obtained from a
PDB file using MolView [developed by Thomas J. Smith]) ❚
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potential energy is actually the free energy of the protein after various positions of wa-
ter molecules are averaged over. Nevertheless, for protein folding the energy is closely
related to the physical energy. This is unlike the energy analog that was used in
Chapter 2 for the attractor neural network, which was not directly related to the phys-
ical energy of the system.

In addition to the energy of the system, E({si}),there is also a relaxation time i

for each variable, si . The relaxation time is governed by the energy barrier EBi of each
two-state system—the barrier to switch between values of si . The value of EBi may vary
from variable to variable,and depend on the values of the other variables {sj }j≠i . The
model we have constructed is quite similar to the Ising model discussed in Section 1.6.
The primary difference is the distinct relaxation times for each coordinate. Unless
otherwise specified, we will make the assumption that the time for a single variable to
flip is small. Specifically, the relaxation times will be assumed to be bounded by a
small time that does not change with the size of the system. In this case the model is
essentially the same as an Ising model with kinetics that do not take into account the
variation in relaxation time between different coordinates. In specific cases we will
address the impact of variation in the relaxation times. However, when there is a sys-
tematic violation of the assumption that relaxation times are bounded, the behavior
is dominated by the largest barriers or the slowest kinetic processes and a different ap-
proach is necessary. Violation of this assumption is what causes the models we are
about to discuss not to apply to glasses (Section 1.4), or other quenched systems. In
such systems a variable describing the local structure does not have a small relaxation
time. The assumption of a short single-variable relaxation time is equivalent to as-
suming a temperature well above the two-state freezing transition.

Our general discussion of protein folding thus consists of assigning a model for
the energy function E({si }) and the dynamics { i} for the transition from si = +1 to
si = −1. In this general prescription there is no assumed arrangement of variables in
space, or the dimensionality of the space in which the variables are located. We will,
however, specialize to fixed spatial arrays of variables in a space of a par ticular di-
mension in many of the models. It may seem natural to assume that the variables {si}
occupy a space which is either one-dimensional because of the chain structure or
three-dimensional because of the 3-d structure of the eventual protein. Typically, we
use the dimensionality of space to distinguish between local interactions and long-
range interactions. Neither one nor three dimensions is actually correct because of the
many possible interactions that can occur between amino acids when the chain dy-
namically rearranges itself in space. In this chapter, however, our generic approach
suggests that we should not be overly concerned with this problem.

We limit ourselves to considering an expansion of the energy up to interactions
between pairs of variables.

(4.2.1)

Included is a local preference field hi determined by local properties of the system
(e.g., the structure of individual amino acids), and the pairwise interactions Jij .

E({si}) = − hisi∑ − Jij sis j∑
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Higher-order interactions between three or more variables may be included and can
be important. However, the formal discussion of the scaling of relaxation is well
served by keeping only these terms. Before proceeding we note that our assumptions
imply ∑hi < 0. This follows from the condition that the energy of the initial unfolded
state is higher than the energy of the final folded state:

(4.2.2)

Thu s , in the lower en er gy state si tends to have the same sign as hi . We wi ll adopt the
m a gn etic term i n o l ogy of the Ising model in our discussions (Secti on 1.6). The va ri-
a bles si a re call ed spins, the para m eters hi a re local va lues of the ex ternal fiel d , the in-
teracti ons are ferrom a gn etic if Jij > 0 or anti ferrom a gn etic if Jij < 0 . Two spins wi ll be
said to be align ed if t h ey have the same sign . No te that this does not imply that the ac-
tual micro s copic coord i n a tes are the same, s i n ce they have been redef i n ed so that the
l owest en er gy state corre s ponds to si = −1 . In s te ad this means that they are ei t h er bo t h
in the initial or both in the final state . Wh en conven i ent for sen ten ce stru ctu re we use
U P (↑) and DOW N (↓) to refer to si =+1 and si =−1 re s pectively. The folding tra n s i ti on
bet ween {si =+1} and {si =−1 } ,f rom U P to DOW N, is a gen era l i z a ti on of the discussion
of f i rs t - order tra n s i ti ons in Secti on 1.6. The pri m a ry differen ces are that we are inter-
e s ted in finite - s i zed sys tems (sys tems wh ere we do not assume the therm odynamic limit
of N → ∞) and we discuss a ri ch er va ri ety of m odel s , not just the ferrom a gn et .

In this chapter we restrict ourselves to considering the scaling of the relaxation
time, (N),in these Ising type models. However, it should be understood that similar
Ising models have been used to construct predictive models for the secondary struc-
ture of proteins. The approach to developing predictive models begins by relating the
state of the spins si directly to the secondary structure. The two choices for dihedral
angles generally correspond to -helix and -sheet. Thus we can choose si =+1 to cor-
respond to -helix,and si =−1 to -sheet. To build an Ising type model that describes
the formation of secondary structure,the local fields, hi , would be chosen based upon
propensities of specific amino acids to be part of -helix and -sheet structures. An
amino acid found more frequently in -helices would be assigned a positive value of
hi . The greater the bias in probability, the larger the value of hi . Conversely, for amino
acids found more frequently in -sheet structures, hi would be negative. The cooper-
ative nature of the and structures would be represented by ferromagnetic inter-
actions Jij between near neighbors. Then the minimum energy conformation for a
particular primary structure would serve as a prediction of the secondary structure.
A chain segment that is consistently UP or DOWN would be -helix or -sheet re-
spectively. A chain that alternates between UP and DOWN would be a turn. Various
models of this kind have been developed. These efforts to build predictive models have
met with some, but thus far limited, success. In order to expand this kind of model to
include the tertiary structure there would be a need to include interactions of and

structures in three dimensions. Once the minimum energy conformation is deter-
mined,this model can be converted to a relaxation time model similar to the ones we
will discuss, by redefining all of the spins so that si = −1 in the folded state.

E({si = +1}) − E({si = −1}) = −2 hi∑ > 0
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Parallel Processing in a Two-Spin Model

Our primary objective in this chapter is to elucidate the concept of parallel process-
ing in relaxation kinetics. Parallel processing describes the kinetics of independent or
essentially independent relaxation processes. To illustrate this concept in some detail
we consider a simple case of two completely independent spins—two independent
systems placed side by side. The pair of spins start in a high energy state identified as
(1,1), or s1 = s2 = 1. The low-energy state is (–1,–1), or s1 = s2 = −1. The system has
four possible states: (1,1), (1,–1), (–1, 1) and (–1, –1).

We can consider the relaxation of the two-spin system (Fig. 4.3.1) as consisting
of hops between the four points (1, 1), (1, –1), (–1,1), and (–1, –1) in a two-
dimensional plane. Or we can think about these four points as lying on a ring that is
essentially one-dimensional, with periodic boundary conditions.Starting from (1,1)
there are two possible paths that might be taken by a particular system relaxing to
(–1,–1),if we neglect the back transitions. The two paths are (1,1)→(1,–1)→( –1, –1)
and (1,1)→(–1,1)→(–1,–1). What about the possibility of both spins hopping at
once (1,1)→(–1,–1)? This is not what is meant by parallel processing. It is a separate
process,called a coherent transition. The coherent transition is unlikely unless it is en-
hanced by a lower barrier (lower ) specifically for this process along the direct path
from (1 ,1) to (–1,–1). In par ticular, the coherent process is unlikely when the two
spins are independent. When they are independent,each spin goes over its own bar-
rier without any coupling to the motion of the other. The time spent going over the
barrier is small compared to the relaxation time Thus it is not likely that both will
go over at exactly the same time.

There are several ways to describe mathematically the relaxation of the two-spin
system.One approach is to use the independence of the two systems to write the prob-
ability of each of the four states as a product of the probabilities of each spin:

P(s1, s2;t) = P(s1; t)P(s2; t) (4.3.1)

The Master equation which describes the time evolution of the probability can be
solved directly by using the solution for each of the two spins separately. We have
solved the Master equation for the time evolution of the probability of a two state (one
spin) system in Section 1.4. The probability of the spin in state s decays or grows ex-
ponentially with the time constant :

P(s ;t) = (P(s;0) − P(s ;∞))e−t / + P(s;∞) (4.3.2)

which is the same as Eq.(1.4.45). The solution of the two-spin Master equation is just
the product of the solution of each spin separately:

P(s1, s2; t) = P(s1; t)P(s2;t) (4.3.3)

For simplicity, it is assumed that the relaxation constant is the same for both. This
equation applies to each of the four possible states. If the energy difference between

= [P(s1;0)e−t / + (1− e−t / )P(s1; ∞)][P(s2; 0 )e−t / + (1− e−t / )P(s2;∞)]

4.3
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E

Figure 4.3.1 Illustration of a four-state (two-spin) system formed out of two independent
two-state systems. The two-dimensional energy is shown on the upper left. The coordinates
of the local energy minima are shown on the right. Below, a schematic energy of the system
is shown on a one-dimensional plot, where the horizontal axis goes around the square in the
coordinate space of the top right figure. ❚

the UP state and the DOWN state of each spin is sufficiently large,essentially all mem-
bers of the ensemble will reach the (–1, –1) state. We can determine how long this
takes by looking at the probability of the final state:

(4.3.4)

where we have used the initial and final values: P(−1;0) = 0, P(−1;∞) ≈ 1. Note that a
key part of this analysis is that we don’t care about the probability of the intermedi-
ate states. We only care about the time it takes the system to reach its final state. When
does the system arrive at its final state? A convenient way to define the relaxation time
of this system is to recognize that in a conventional exponential convergence, is the

P(−1,−1;t) = [(1− e−t / )P(−1;∞)][(1 − e−t / )P(−1;∞)] ≈ (1− e− t / )2
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time at which the system has a probability of only e−1 of being anywhere else.
Applying this condition here we can obtain the relaxation time, (2), of two indepen-
dent spins from:

(4.3.5)

or

(4.3.6)

which is slightly larger than .A plot of P(−1,−1; t) is compared to P(−1;t) in Fig. 4.3.2.
Why is the relaxation time longer for two systems? It is longer because we have to

wait until the spin that takes the longest time relaxes. Both of the spins relax with the
same time constant . However, statistically, one will take a little less time and the
other a little more time. It is the longest time that is the limiting one for the relaxation
of the two-spin system.

Where do we see the effect of parallel processing? In this case it is expressed by
the statement that we can take either one of the two paths and get to the minimum
energy conformation. If we take the path (1,1)→(1,–1)→(–1,–1), we don’t have to
make a transition to the state (–1, 1) in order to see if it is lower in energy. In the two-
spin system we have to visit three out of four conformations to get to the minimum
energy conformation. If we add more spins, however, this advantage becomes much
more significant.

There may be confusion on one important point. The ability to independently re-
lax different coordinates means that the energies of the system for different states are
correlated. For example, in the two-spin system, the energies satisfy the relationship

E(1,1) − E(1,−1) = E(−1,1) − E(−1, −1) (4.3.7)

If we were to assume instead that each of the four energies, E(±1, ±1),can be speci-
fied independently, energy minimization would immediately require a complete ex-
ploration of all conformations. Independence of the energies of different conforma-
tions for a system of N spins would require the impossible exploration of all phase

(2) = [− ln(1 − (1− e−1)1 / 2)] = 1.585

1 − P(−1,−1; (2)) = e−1 ≈ 1− (1− e− ( 2 ) / )2
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system. The curves show
the probability that the
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bility goes to zero as-
ymptotically. The relax-
ation time is identified
with the time when the
probability is e−1. ❚
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space. It is the existence of correlations in the energies of different conformations that
enables parallel processing to work.

Homogeneous Systems

The models we will consider for a system of N relaxing spins {si} naturally divide into
homogeneous models and inhomogeneous models. For homogeneous models a
transformation can be made that maps any spin si onto any other spin sj , where the
transformation preserves the form of the energ y. Specifically, it preserves the local
fields and the interactions between spins.A homogeneous model is loosely analogous
to assuming that all amino acids are the same. Such a polymer is called a homopoly-
mer. Boundary conditions may break the t ransformation symmetry, but their effect
can still be considered in the context of homogeneous models. In contrast, an inho-
mogeneous model is analogous to a heteropolymer where amino acids along the
chain are not all the same. Inhomogeneities are incorporated in the models by vary-
ing local fields, relaxation times or interactions between spins in a specified way, or by
assuming they arise from a specified type of quenched stochastic variable.

In the homogeneous case, all sites are equivalent, and thus the local fields hi in
Eq. (4.2.1) must all be the same. However, the interactions may not all be the same.
For example, there may be nearest-neighbor interactions, and different second-
neighbor interactions. We indicate that the interaction depends only on the relative
location of the spins by the notation Ji−j :

(4.4.1)

Ji − j is symmetric in i − j and each pair i, j appears only once in the sum. Eq. (4.2.2)
implies that h is negative.A further simplification would be to consider each spin to
interact only with z neighbors with equal interaction strength J . This would be the
conventional ferromagnet or antiferromagnet discussed in Section 1.6. When it is
convenient we will use this simpler model to illustrate properties of the more general
case. In the following sections, we systematically describe the relaxation in a number
of model homogeneous systems. The results of our investigations of the scaling be-
havior of the relaxation time are summarized in Table 4.4.1.Each of the models illus-
trates a concept relevant to our understanding of relaxation in complex systems. This
table can be referred to as the analysis proceeds.

4.4.1 Decoupled
The simplest homogeneous model is the decoupled case, where all spins are indepen-
dent. Starting from Eq. (4.4.1) we have:

(4.4.2)

This is the N spin analog of the two-spin system we considered in Section 4.3. The en-
ergetics are the same as the noninteracting Ising model. However, our interest here is
to understand the dependence of kinetics on the number of spins N. The dynamics

E = −h∑ si

    
E({si }) = −h∑ s i − ∑ J i− js is j

4.4
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are defined by the individual two-state systems, where a barrier controls the relaxation
rate. Relaxation is described by the exponential decay of the probability that each spin
is +1.

We have to distinguish between two possible cases. When we analyzed the two-
spin case we assumed that essentially all members of the ensemble reach the unique
state where al l si = −1. We have to check this assumption more carefully now. The
probability that a par ticular spin is in the +1 state in equilibrium is given by the ex-
pression (Eq. (1.4.14)):

(4.4.3)

where E+ = −2h is the (positive) energy difference between si = +1 and si = −1. If we
have N spins, the average number that are +1 in equilibrium is

(4.4.4)

Because N can be large , we do not immed i a tely assume that this nu m ber is negl i gi bl e .
However, we wi ll assume that in equ i l i brium a large majori ty of spins are DOW N. This is
true on ly wh en E+> >k T and e−E+ /k T < < 1 . In this case we can approx i m a te Eq . (4.4.4) as:

(4.4.5)

There are now two distinct possibilities depending on whether N+ is less than or
greater than one. If N+ is less than one, all of the spins are DOWN in the final state. If
N+ is greater than one,almost all, but not all, of the spins are DOWN in the final state.

In the first case,N + << 1, we proceed as with the two-spin system to consider the
growth of the probability of the final state:

(4.4.6)
Defining the relaxation time as for the two-spin case we have:

(4.4.7)1 − P({si = −1}; (N )) = e−1 ≈1 − (1 − e− (N )/ )N

P({si = −1}; t ) = [P(si = −1;0)e− t / + (1 − e−t / )P(si = −1;∞)]
i

∏ = (1 − e−t / )N

N+ = Ne− E+ / kT

N+ = Ne− E+ / kT /(1 + e− E+ / kT )

P(+1;∞) = e− E+ / kT /(1+ e− E+ / kT )
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Model Scaling

Decoupled model O(ln(N );1)
Essentially decoupled model O(ln(N );1)
Nucleation and growth—with neutral boundaries O(aN (d−1)/d

;N −1;ln(N );1)
—with nucleating boundaries O(N 1/d; ln(N);1)

Boundary-imposed ground state O(N 2/d)
Long-range interactions O(ln(N );aN 2

)

Table 4.4.1 Summary of scaling behavior of the relaxation time of the homogeneous models
discussed in Section 4.4. The notation indicates the different scaling regimes from smaller to
larger systems. ❚
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or

(4.4.8)

For large N we expand this using a1/N ∼ 1 + (1 / N)ln(a) to obtain

(4.4.9)

Neglecting the constant term, we have the result that the time scales logarithmically
with the size of the system (N) ∼ ln(N). We see the tremendous advantage of paral-
lel processing, where the relaxation time grows only logarithmically with system size
rather than exponentially.

In the second case, N >> N+ >> 1, we cannot determine the relaxation time from
the probability of a particular final state of the system. There is no unique final state.
Instead, we have to consider the growth of the probability of the set of systems that
are most likely—the equilibrium ensemble with N+ spins si = +1. We can guess the
scaling of the relaxation time from the divisibility of the system into independent
groups of spins. Since we have to wait only until a particular fraction of spins relax,
and this fraction does not change with the size of the system,the relaxation time must
be independent of the system size or (N) ∼ 1. We can show this explicitly by writing
the fraction of the remaining UP spins as:

(4.4.10)

where we use the assumption that e−E+/ kT<<1. We must now set a criterion for the re-
laxation time (N).A reasonable criterion is to set (N) to be the time when there are
not many more than the equilibrium number of excited spins,say (1 + e−1) times as
many:

(4.4.11)

This implies that:

(4.4.12)

or

(4.4.13)

This rel a x a ti on time is indepen dent of the size of the sys tem or (N) ∼ 1 ; we name it ∞.
The (N) ∼ 1 scaling we found for this case is lower than the logarithmic scaling.

We must understand more ful ly when it applies. In order for N+ (Eq. (4.4.5)) to be
greater than 1, we must have:

N > e+E+ /kT (4.4.14)

(N ) = (E+ / kT + 1) ≡ ∞

N e− (N )/ + e− E+ / kT[ ] = (1 + e−1)Ne− E+ / kT

N+ ( (N)) = (1 + e−1)N+ (∞)

N+ (t ) =
i

∑ P(si = 1;t) = [P(si = +1;0)e− t / + (1 − e−t / )P(si = +1;∞)]
i
∑

= N e−t / + (1− e −t / )e− E+ / kT[ ] ≈ N e−t / + e− E+ / kT[ ]

(N ) ~ [− ln(1− (1+ (1/ N )ln(1 − e−1)))] = [− ln(−(1/ N )ln(1− e−1))]

= [ln(N) − ln(− ln(1− e−1))] = [ln( N) + 0.7794]

(N ) = [−ln(1− (1− e−1)1/ N )]
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Thus N must be large in order for N+ to be greater than 1.It may seem surprising that
for larger systems the scaling is lower than for smaller systems. The behavior of the
scaling is illustrated schematically in Fig. 4.4.1 (see Question 4.4.1).

There is another way to estimate the relaxation time for very large systems, ∞.We
use the smaller system relaxation Eq.(4.4.9) at the point where we crossover into the
regime of Eq.(4.4.14) by setting N = e+E+ / kT. Because the relaxation time is a contin-
uous function of N, at the crossover point it should give an estimate of ∞. This gives
a similar result to that of Eq. (4.4.13):

(4.4.15)

Question 4.4.1 Combine the analysis of both cases N+ << 1 and N+ >> 1
by setting an appropriate value of N+( (N)) that can hold in both cases.

Use this to draw a plot like Fig. 4.4.1.

Solution 4.4.1 The time evo luti on of N+(t) is de s c ri bed by Eq . (4.4.10) for
ei t h er case N+ < < 1 and N+ > > 1 . The difficulty is that wh en N+ > > 1 , t h e
process stops wh en N+(t) becomes less than 1, and there is no more rel a x a ti on

∞ ~ [E+ /kT + 0.7794]

438 P ro te i n  Fo l d i ng  I

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 438
Title: Dynamics Complex Systems Short / Normal / Long

0

2

4

6

8

10

12

14

1 10 102

(N)/

ln(N)+0.7794

N

E+/kT+1

E+/kT+0.7794

103 104 105

Figure 4.4.1 Relaxation time (N) of N independent spins as a function of N. For systems
that are small enough, so that relaxation is to a unique ground state, the relaxation time
grows logarithmically with the size of the system. For larger systems, there are always some
excited spins, and the relaxation time does not change with system size. This is the thermo-
dynamic limit. The different approximations are described in the text. A unified treatment in
Question 4.4.1 gives the solid curve. In the illustrated example, the crossover occurs for a
system with about 150 independent spins. This number is given by eE+ /kT so it varies expo-
nentially with the energy difference between the two states of each spin. ❚
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to be don e . For this case we would like to iden tify the rel a x a ti on time as the
time wh en there is less than one spin not U P. So we rep l ace Eq . (4.4.11) by

where Nr is a constant we can choose which is less than 1. When N+ >> 1,the
first term will dominate and we will have the same result as Eq. (4.4.13),
when N+ << 1 the second term will dominate. Eq. (4.4.16) leads instead of
Eq. (4.4.13) to:

(N) = ln(N / Nr + e−1N+)) (4.4.17)

When N+ << 1 this reduces to:

(N) = (ln(N) − ln(Nr)) (4.4.18)

which is identical to Eq. (4.4.9) if we identify

(4.4.19)

which shows that our original definition of the relaxation time is equivalent
to our new definition if we use this value for the average number of residual
unrelaxed spins.

The plot in Fig. 4.4.1 was constructed using a value of E+ /kT = 5 and
Eqs. (4.4.9), (4.4.13), (4.4.15) and (4.4.17). ❚

The behavior for large systems satisfying Eq.(4.4.13) is just the thermodynamic
limit where intrinsic properties, including relaxation times, become independent of
the system size. In this independent spin model, the relaxation time grows logarith-
mically in system size until the thermodynamic limit is reached, and then its behav-
ior crosses over to the thermodynamic behavior and becomes constant. To summa-
rize the two regimes, we will label the scaling behavior of the independent system as
O(ln(N);1) (the O is read “order”).

While the scaling of the relaxation time in the thermodynamic limit is as low as
possible, and therefore attractive in principle for the protein-folding problem, there
is an unattractive feature—that the equilibrium state of the system is not unique.
This violates the assumption we have made that the eventual folded structure of a
protein is well defined and precisely given by {si = −1}. However, in recent years it
has been found that a small set of conformations that differ slightly from each other
constitute the equilibrium protein structure. In the context of this model, the exis-
tence of an equilibrium ensemble of the protein suggests that the protein is just at
the edge of the thermodynamic regime. In the homogeneous model there is no dis-
tinction between different spins, and all are equally likely to be excited to their
higher energy state. In the protein it is likely that the ensemble is more selective. For
essentially all models we will investigate, for large enough systems,a finite fraction of
spins must be thermally excited to a higher energy state. The crossover size depends
exponentially on the characteristic energy required for an excited state to occur. This
energy is just E+ in the independent spin model. Because the fraction of excited

Nr = − ln(1− e−1) = 0.4587 ≈ .5

N+ ( (N)) = (1 + e−1)N+ (∞) + Nr
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states also depends exponentially on the temperature, the structure of proteins is af-
fected by physical body temperature. This is one of the ways in which protein func-
tion is affected by the temperature.

Either the logarithmic or the constant scaling of the independent spin model, if
correct,is more than adequate to account for the rapid folding of proteins.Of course
we know that amino acids interact with each other. The interaction is necessary for
interdependence in the system. Is it possible to generalize this model to include some
interactions and still retain the same scaling? The answer is yes,but the necessary lim-
itations on the interactions between amino acids are still not very satisfactory.

4.4.2 Essentially decoupled
The decoupled model can be generalized without significantly affecting the scaling,
by allowing limited interactions that do not affect the relaxation of any spins. To
achieve this we must guarantee that at all times the energy of the spin si is lower when
it is DOWN than when it is UP. For a protein, this corresponds to a case where each
amino acid has a certain low-energy state regardless of the protein conformation. We
specialize the discussion to nearest-neighbor interactions between each spin and z
neighbors—a ferromagnetic or antiferromagnetic Ising model. We also assume the
same relaxation time applies to all spins at all times. The more general case is de-
ferred to Question 4.4.2.

When there are interactions,the change in energy upon flipping a particular spin
si from UP to DOWN is dependent on the condition of the other spins {sj}j ≠ i . We write
the change as:

(4.4.20)

The latter expression is for homogeneous systems. For only nearest-neighbor interac-
tions in both ferromagnet and antiferromagnet cases

(4.4.21)

where the sum is over the z nearest neighbors of si . Note that this expression depends
on the state of the neighboring spins,not on the state of si . For the spins to relax es-
sentially independently, we require that the minimum possible value of Eq. (4.4.21)

E+min = −2h − 2z |J | (4.4.22)

is greater than zero. To satisfy these requirements we must have

|h|>z|J | (4.4.23)

which means that the local field |h| is stronger than the interactions. When it is con-
venient we will also assume that E+min >>kT, so that the energy difference between UP

and DOWN states is larger than the thermal energy.
The ferromagnetic case J > 0 is the same as the kinetics of a first-order transition

(Section 1.6) when the local field is so large that nucleation is not needed and each
spin can relax separately. Remembering that h < 0,the value of E+i starts from its min-

E+i ({sj}j ≠i ) = −2h − 2J s j
nn
∑

    

E +i({s j } j≠i ) = E(s i = +1,{s j }j ≠i ) − E(si = −1,{s j } j≠i ) = −2h −2 J i− j
j≠i
∑ s j
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imum value when all of the spins (neighbors of si) are UP, sj =+1. E+i then increases as
the system relaxes until it reaches its maximum value everywhere when all the spins
(neighbors of si) are DOWN, sj = −1 (see Fig. 4.4.2). This means that initially the inter-
actions fight relaxation to the ground state,because they are promoting the alignment
of the spins that are UP. However, each spin still relaxes DOWN. The final state with all
spins DOWN is self-reinforcing, since the interactions raise the energy of isolated UP

spins. This inhibits the excitation of individual spins and reduces the probability that
the system is out of the ground state. Thus, ferromagnetic interactions lead to what is
called a cooperative ground state. In a cooperative ground state,interactions raise the
energy cost of, and thus inhibit, individual elements from switching to a higher en-
ergy state.This property appears to be characteristic of proteins in their 3-d structure.
Various interactions between amino acids act cooperatively to lower the conforma-
tion energy and reduce the likelihood of excited states.

In order to consider the relaxation time in this model, we again consider two
cases depending upon the equilibrium number of UP spins, N+. The situation is more
complicated than the decoupled model because the eventual equilibrium N+ is not
necessarily the target N+ during the relaxation. We can say that the effective N+(E+) as

Homog en eou s  s y s t e m s 441

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 441
Title: Dynamics Complex Systems Short / Normal / Long

E+

(# of neighbors=+1)-(# of neighbors=-1)

J>0J<0

E+min
0

-z z0

–2h

Figure 4.4.2 Illustration, for the essentially decoupled model, of the value of the single-spin
energy E+ as a function of the number of its neighbors (out of a total of z) that are UP and
DOWN. At the right all of the neighbors are UP, and at the left all of the neighbors are DOWN.
E+ measures the energy preference of the spin to be DOWN. E+ is always positive in the es-
sentially decoupled model. The relaxation process to the ground state takes the system from
right to left. For a ferromagnet, J > 0, the change reinforces the energy preference for the
spin to be DOWN. For the antiferromagnet, J < 0, the change weakens the energy preference
for the spin to be DOWN. Implications for the time scale of relaxation are described in the
text. ❚
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given by Eq. (4.4.5) changes over time. Because E+ starts out small, it may not be
enough to guarantee that all spins will be DOWN in the final state. But the increase in
E+ may be sufficient to guarantee that all spins will be DOWN at the end.

The situation is simplest if there is complete relaxation toward the ground state
at all times. This means:

(4.4.24)

In this case, the relaxation time scaling is bounded by the scaling of the decoupled
model. We can show this by going back to the equation for the dynamics of a single
relaxing two-state system, as written in Eq. (1.4.43):

(4.4.25)

The difficulty in solving this equation is that P(1;∞) (Eq. (4.4.3)) is no longer a con-
stant. It varies between spins and over time because it depends on the value of E+.
Nevertheless, Eq. (4.4.25) is valid at any particular moment with the instantaneous
value of P(1;∞). When Eq.(4.4.24) holds, P(1;∞)<1/N is always negligible compared
to P(1; t), even when all the spins are relaxed, so we can simplify Eq. (4.4.24) to be:

(4.4.26)

This equation is completely independent of E+. It is therefore the same as for the de-
coupled model. We can integrate to obtain:

P(1;t) = e−t / (4.4.27)

Thus each spin relaxes as a decoupled system,and so does the whole system with a re-
laxation time scaling of O(ln(N)).

When Eq. (4.4.24) is not true, the difficulty is that we can no longer neglect
P(1;∞) in Eq. (4.4.25). This means that while the spins are relaxing, they are not re-
laxing to the equilibrium probability. There are two possibilities. The first is that the
equilibrium state of the system includes a small fraction of excited spins. Since the
fraction of the excited spins does not change with system size,the relaxation time does
not change with system size and is O(1).

The other possibility is that initially the relaxation allows a small fraction of spins
to be excited. Then as the relaxation proceeds, the energy differences E+i({sj }j ≠ i) in-
crease. This increase in energy differences then causes all of the spins to relax. How
does the scaling behave in this case? Since each of the spins relaxes independently, in
O(1) time all except a small fraction N will relax. The remaining fraction consists of
spins that are in no particular relationship to each other; they are therefore indepen-
dent because the range of the interaction is short. Thus,they relax in O(ln( N)) time
to the ground state.The total relaxation time would be the sum of a constant term and
a logarithmic term that we could write as O(ln( N)+1), which is not greater than
O(ln(N)). This concludes the discussion of the ferromagnetic case.

For the antiferromagnetic case, the situation is actually simpler. Since J < 0, re-
membering that h < 0,the value of E+ starts from its maximum value when all sj =+1,
and reaches its minimum value when all sj =−1 (see Fig. 4.4.2). Thus N+(E+) is largest
in the ground state.Once again,if there is a nonzero fraction of spins at the end that

˙ P (1; t) = −P(1; t )/

˙ P (1; t) = (P(1; ∞) − P(1; t ) ) /

N < e+ E+ min / kT
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are UP then the relaxation must be independent of system size, O(1). If there are no
residual UP spins in equilibrium,then in Eq.(4.4.25) P(1;∞)<1/N always,and the re-
laxation reduces directly to the independent case O(ln(N)).

The ferromagnetic case is essentially different from the antiferromagnetic case
because we can continue to consider stronger values of the ferromagnetic interaction
without changing the ground state. However, if we consider stronger antiferromag-
netic interactions,the ground state will consist of alternating UP and DOWN spins and
this is inconsistent with our assumptions (we would have redefined the spin vari-
ables). Thus,nearest-neighbor antiferromagnetic interactions,as long as they do not
lead to an antiferromagnetic ground state, do not affect the relaxation behavior.

When there are spin-spin interactions, we would also expect the relaxation times

i to be affected by the interactions. The relaxation time depends on the barrier to re-
laxation, EBi , as shown in the energy curve of the two-state system Fig. 1.4.1. When
the energy difference E+ is higher, we might expect that the barrier to relaxation of the
two-state system will become lower. This would be the case if we raise E+ without rais-
ing the energy at the top of the barrier. On the other hand,if the energy surface is mul-
tiplied by a uniform factor to increase E+, then the barrier would increase. These dif-
ferences in the barrier show up in the relaxation times i . In the former case the
relaxation is faster, and in the latter case the relaxation is slower. For the nearest-
neighbor Ising model, there would be only a few different relaxation times corre-
sponding to the different possible states of the neighboring spins.We can place a limit
on the relaxation time (N) of the whole system by replacing all the different spin re-
laxation times with the maximum possible spin relaxation time. As far as the scaling
of (N) with system size,this will have no effect. The scaling remains the same as in
the noninteracting case, O(ln(N);1).

Question 4.4.2 Consider the more general case of a homogeneous model
with interactions that may include more than just nearest-neighbor in-

teractions. Restricting the interactions not to affect the minimum energy of
a spin,argue that the relaxation time scaling of the system is the same as the
decoupled model. Assume that the interactions have a limited range and the
system size is much larger than the range of the interactions.

Solution 4.4.2 As in Eq. (4.4.20), the change in energy on flipping a par-
ticular spin is dependent on the conditions of the other spins {sj}j ≠ i .

(4.4.28)

We assume that E+i({sj}j ≠ i ) is always positive. Moreover, for relaxation to oc-
cur, the energy difference must be greater than kT. Thus the energy must be
bounded by a minimum energy E+min satisfying:

E+i({sj}j ≠ i) > E+min >> kT (4.4.29)

This implies that the interactions do not change the lowest energy state of
each spin si . For the energy of Eq. (4.4.1), E+min can be written

    

E +i({s j } j≠i ) = −2h − 2 Ji −j
j ≠i
∑ s j
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(4.4.30)

Interactions may also affect the relaxation time of each spin i{sj}j ≠ i, so we
also assume that relaxation times are bounded to be less than a relaxation
time max .

We assume that the parameters max and E+min do not change with sys-
tem size. This will be satisfied, for example,if the interactions have a limited
range and the system size is larger than the range of the interactions.

Together, the assumption of a bound on the energy differences and a
bound on the relaxation times suggest that the equilibration time is bounded
by that of a system of decoupled spins with −2h = E+min and = max. There
is one catch. We have to consider again the possibility of incomplete relax-
ation to the ground state. The scenario follows the same possibilities as the
nearest-neighbor model. The situation is simplest if there is complete relax-
ation to the ground state at all times. This means:

(4.4.31)

which is a more stringent condition than Eq.(4.4.29). In this case the bound
on (N) is straightforward because each spin is relaxing to the ground state
faster than in the original case. Again using Eq. (1.4.43):

(4.4.32)

This equation applies at any particular moment, with the time-dependent
values of P(1;∞; t) and (t), where the time dependence of these quantities is
explicitly written. Since P(1;∞;t) is always negligible compared to P(1; t),
when Eq. (4.4.31) applies, this is

(4.4.33)

We can integrate to obtain:

(4.4.34)

The inequality follows from the assumption that the relaxation time of each
spin is always smaller than max. Each spin relaxes faster than the decoupled
system,and so does the whole system. The scaling behavior O(ln(N)) of the
decoupled system is a bound for the increase in the relaxation time of the
coupled system.

When Eq. (4.4.31) is not true, we can no longer neglect P(1;∞;t) in
Eq.(4.4.32). This means that while the spins are relaxing faster, they are not
relaxing to the equilibrium probability. There are two possibilities. The first
is that the equilibrium state of the system includes a small fraction of excited
spins. Since the range of the interactions is smaller than the system size, the

    P(1;t) = e
− dt

(t)
0

t

∫
< e −t / max

˙ P (1; t) = −P(1; t )/ (t )

˙ P (1; t) = (P(1; ∞;t ) − P(1; t) ) / (t)

N < e+ E+ min / kT

E+ min = −2h − 2 | Ji− j
j ≠i
∑ |
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fraction of the excited spins does not change with system size and the relax-
ation time does not change with system size.The other possibility is that ini-
tially the values of E+i({sj}j ≠ i) do not satisfy Eq.(4.4.31) and so allow a small
fraction of spins to be excited. Then as the relaxation proceeds, the energy
differences E+i ({sj}j ≠ i) increase. This increase in energy differences then
causes all of the spins to relax. The relaxation time will not be larger than
O(ln(N)) as long as E+min >> kT (Eq.(4.4.29)) holds. Because of this condi-
tion,each of the spins will almost always relax,and in O(1) time all except a
small fraction N will relax. The remaining fraction consists of spins that are
in no particular relationship to each other; they are therefore independent,
because the range of the interaction is short, and will relax in at most
O(ln( N )) time to the ground state. The total relaxation time would be the
sum of a constant term and a logarithmic term that we could write as
O(ln( N )+1), which is not greater than O(ln(N )). ❚

We have treated carefully the decoupled and the almost decoupled models to
distinguish b etween O(ln(N )) and O(1) scaling. One reason to devote such atten-
tion to these simple models is that they are the ideal case of parallel processing. It
should be understood, however, that the difference between O(ln(N )) and O(1)
scaling is not usually significant. For 1000 amino acids in a protein, the difference is
only a factor of 7, which is not significant if the individual amino acid relaxation
time is microscopic.

One of the points that we learned about interactions from the almost decoupled
model is that the ferromagnetic interactions J > 0 cause the most problem for relax-
ation. This is because they reinforce the initial state before the effect of the field h acts
to change the conformation. In the almost decoupled model, however, the field h
dominates the interactions J. In the next model this is not the case.

The almost decoupled model is not satisfactory in describing protein folding be-
cause the interactions between amino acids can affect which conformation they are
in. The next model allows this possibility. The result is a new scaling of the relaxation
with system size, but only under particular circumstances.

4.4.3 Nucleation and growth: relaxation by driven diffusion
The next homogenous model results from assuming that the interactions are strong
enough to affect the minimum energy conformation for a particular spin:

E+min < 0 (4.4.35)

From Eqs.(4.4.20) and (4.4.21) we see that this implies that the total value of the in-
teractions exceeds the local preference as determined by the field h. Eventually, it is h
that ensures that all of the spins are DOWN in the ground state. However, initially
when all of the spins are UP, due to the interactions the spins have their lowest energy
UP rather than DOWN. During relaxation, when some are UP and some are DOWN, a
particular spin may have its lowest energy either UP or DOWN. The effect of both the
external field and the interactions together leads to an effective field, h + ∑

j

Ji−j sj , that
determines the preference for the spin orientation at a particular time.
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The simplest model that illustrates this case is the Ising ferromagnet in a 
d-dimensional space (Section 1.6). The interactions are all positive,and the spins try
to align with each other. Initially the local preference is for the spins to remain UP; the
global minimum of energy is for all of the spins to be DOWN. The resolution of this
problem occurs when enough of the spins in a particular region flip DOWN using
thermal energy, to create a critical nucleus. A critical nucleus is a cluster o f DOWN

spins that is sufficiently large so that further growth of the cluster lowers the energy
of the system. This happens when the energy lowering from flipping additional spins
is larger than the increase in boundary energy between the DOWN cluster and the UP

surrounding region.Once a critical nucleus forms in an infinite system,the region of
down spins grows until it encounters other such regions and merges with them to
form the equilibrium state. In a finite system there may be only one critical nucleus
that is formed, and it grows until it consumes the whole system.

The nucleation and growth model of first-order transitions is valid for quite ar-
bitrary interactions when there are two phases, one which is metastable and one
which is stable,if there is a well-defined boundary between them when they occur side
by side. This applies to a large class of models with finite length interactions. For ex-
ample, there could be positive nearest-neighbor interactions and negative second-
neighbor interactions. As long as the identity of the g round state is not disturbed,
varying the interactions affects the value of the boundary energy, but not the overall
behavior of the metastable region or the stable region. We do not consider here the
case where the boundaries become poorly defined. In our models, the metastable
phase consists of UP spins and the stable phase consists of DOWN spins.A system with
only nearest-neighbor antiferromagnetic interactions on a bipartite lattice is not in-
cluded in this section. For J < 0 on a bipartite lattice, when Eq.(4.4.35) is satisfied,the
ground state is antiferromagnetic (alternating si = ±1),and we would have redefined
the spins to take this into consideration.

The dynamics of relaxation for nucleation and growth are controlled by the rate
of nucleation and by the rate of diffusion of the boundary between the two phases.
Because of the energy difference of the two phases,a flat boundary between them will
move at constant velocity toward the metastable phase,converting UP spins to DOWN

spins. This process is essentially that of driven diffusion down a washboard potential
as illustrated in Fig . 1.4.5. The velocity of the boundary, v, can be measured in units
of interspin separation per unit time.

During relaxation, once a critical nucleus of the stable phase forms, it grows by
driven diffusion and by merging with other clusters. The number of spins in a partic-
ular region of the stable phase grows with time as (vt)d. This rate of growth occurs be-
cause the region of the stable phase grows uniformly in all directions with velocity v.
Every part of the boundary diffuses like a flat boundary (Fig. 4.4.3). This follows our
assumption that the boundary is well defined. There are two parts to this assumption.
The first is that the thickness of the boundary is small compared to the size of the crit-
ical nucleus. The second is that it becomes smooth, not rough, over time. When these
assumptions are satisfied, the stable region expands with velocity v in all directions.
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There are several cases that must be considered in order to discuss the scaling of
the relaxation time of a finite system of N spins.First we must distinguish three dif-
ferent ranges for the system size. The system may be smaller than the size of a critical
nucleus, Nc 0. If the system is larger than a critical nucleus,then it may be smaller than
the typical distance between critical nuclei. Third,it may be larger than this distance.
Finally, we must also consider the properties of the boundary of the system, specifi-
cally whether or not it promotes nucleation.

Nonnucleating boundary
We start by considering the three system sizes when the boundary of the system is ei-
ther neutral or suppresses nucleation. Under these circumstances, we can neglect the
effect of the boundary because relaxation depends upon nucleation and growth from
the interior. The spins near the boundary join the stable phase when it reaches them.
We assume throughout that the number of spins in the boundary is negligible com-
pared to the number in the interior.

The case of the system being smaller than the size of the critical nucleus,N < Nc 0,
is special because the energy barrier to relaxation grows as the system size increases.
The energy may be seen schematically in Fig. 4.4.4 (or Fig. 1.6.10) as a function of
cluster size. The washboard-like energy rises in the region below the critical nucleus
size. When the system is smaller than the size of a critical nucleus, the energy neces-
sary to form a region of DOWN spins of roughly the size of the system controls the rate
of relaxation. Because the energy barrier to forming this region increases roughly lin-
early with system size, the relaxation time grows exponentially with system size. We
can be more precise by using an expression for how the barrier energy grows with sys-
tem size. The energy of a cluster in an infinite system grows with the number of spins
in the cluster as (see also Question 1.6.14):

Ec(Nc) = 2hNc + bNc
(d −1) / d (4.4.36)
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Figure 4.4.3 When a critical nu-
cleus of a stable phase has formed in
a metastable phase, the nucleus
grows by driven diffusion. The mo-
tion of the boundary increases the
volume of the equilibrium phase at
the expense of the metastable
phase. Each part of the boundary
moves at a constant average velocity
v. Thus, every dimension of the equi-
librium phase grows at a constant
rate. The number of spins in the
equilibrium phase grows as (vt)d

where d is the dimensionality of the
space. ❚
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The first term is the bulk energy of the DOWN spins in the cluster as compared to
metastable UP spins. The second term is the boundary energy, where b is a measure of
the boundary energy per unit length. This expression is reasonable if the critical nu-
cleus is large compared to the boundary width—the boundary is well defined. The
critical nucleus for an infinite system is determined by the maximum value of Ec(Nc).
This is obtained setting its derivative with respect to Nc to zero. Aside from a factor of
(d − 1)/d, this means that both terms are equal in magnitude for the critical nucleus.
If the system is smaller than the critical nucleus size, then the boundary energy must
dominate the bulk energy of a cluster for all possible cluster sizes. Thus for a system
with N < Nc 0 we can neglect the first term in Ec(Nc), leaving us with the energy
Ec(Nc) ≈ bNc

(d−1) / d.
For a system with N < Nc 0 that has periodic boundary conditions,the boundary

of a cluster grows only as long as the cluster contains less than one-half of the spins in
the system. Beyond this point, the boundary of the cluster shrinks. So the maximum
cluster energy is reached when Nc is N /2. This is still true for a fixed boundary if the
boundary is neutral. The relevant cluster may be identified by bisecting the system
with UP spins on one side and DOWN spins on the other. If the boundary suppresses
nucleation, then the maximum value of Nc may be greater than N / 2, but it is not
larger than N. As long as the maximum value of Nc is proportional to N, the results
given below are essentially unaffected.
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Figure 4.4.4 Schematic illustration of the energy of a cluster of DOWN spins in a metastable
background of UP spins as a function of the number of spins in the cluster Nc. The corruga-
tion of the line indicates the energy barrier as each spin flips from UP to DOWN. The dashed
line illustrates the energy Ec(Nc) of the cluster in an infinite system. The energy increases un-
til it reaches the size of a critical nucleus Nc0 and decreases thereafter as the cluster grows
to become the stable phase. The solid line indicates the energy in a finite system of size
N < Nc0. In this case the maximum energy, which is the barrier to relaxation, is located in the
vicinity of N/2, as indicated. ❚
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The cluster energy we have calculated is the energy at the bottom of a particular
well in Fig. 4.4.4. It does not include the height of the corrugation EB0 which is the en-
ergy barrier to flipping a single spin. The energy barrier for nucleation in the system
with N < Nc 0 is thus given by

EB(N) = Ec(N / 2) + EB0 = b(N /2)(d −1) / d + EB0 (4.4.37)

The relaxation time is given approximately by the probability that the system will
reach this barrier energy, as given by a Boltzmann factor of the energy. More specifi-
cally, it is given by Eq. (1.4.44), which gives the relaxation of a two-state system with
the same barrier (we neglect the back transition rate):

(4.4.38)

This shows the exponential dependence of the relaxation time on system size in this
small system limit when N < Nc 0. We note that we have neglected to consider the many
possible ways there are to form a cluster of a particular size, which may also affect the
scaling of the relaxation time.

The existence of a region of exponential growth of the relaxation time should be
understood in a context where we compare the nucleation time with the observation
time. If the nucleation time is long compared to the observation time, we would not
expect to see relaxation to the ground state.

If the size of the system is much larger than the size of a critical nucleus, N >> Nc 0,
we can consider each nucleus to be essentially a point object of no size,when it forms.
A nucleus forms at a particular site according to a local relaxation process with a time
constant we denote c 0—the nucleation time. The nuclei then grow, as discussed pre-
viously, with a constant velocity v in each direction. During the relaxation we either
have one or many nuclei that form.Only one nucleus forms when the typical time for
forming a nucleus in the system is longer than the time a single nucleus takes to con-
sume the whole system. As soon as one nucleus forms, its growth is so rapid that no
other nuclei form during the time it grows to the size of the whole system
(Fig. 4.4.5(a)). The relaxation time is determined by the time that passes until the first
nucleation event occurs in the system. For larger systems,the number of possible nu-
cleation sites increases in direct proportion to N. Thus the time till the first nucleation
event decreases, and the relaxation time actually decreases with system size. We will
derive the result that (N) ~ N −1. To determine when this scaling applies we must find
expressions for the nucleation time, and the time a nucleus takes to grow to the size
of the system. Independent nuclei can form on every Nc 0 sites. The typical time to
form a critical nucleus anywhere in the system, c N , where c N << c 0, is the time it
takes any one of the possible N /Nc 0 sites to form a single critical nucleus:

(4.4.39)

expanding the exponential using cN / c 0 << 1 gives

(4.4.40)cN = c0 Nc0 / N

(N / Nc0)e− cN / c0 = N / Nc0 −1

(N ) = −1e EB (N )/ kT = −1e(E B0 +bN
(d −1)/ d

/ 2
( d−1)/ d

)/ kT = ebN
(d−1)/ d

/ 2
(d−1)/ d

/ kT
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This result says that the time to form a single nucleus is inversely proportional to the
size of the system. The time for a single nucleus to grow to the size of the system, v ,
is given by

(4.4.41)

or

(4.4.42)

We are neglecting numerical factors that reflect different possible locations the nu-
cleus may form and their relationship to the boundary of the system.

The condition that a single nucleus will form cN v is given by combining Eq.
(4.4.40) and Eq. (4.4.41) to obtain

(4.4.43)

where we have also repeated our assumption that the size of the system is larger than
the critical nucleus. Eq.(4.4.43) describes the bounds on the system size so that only
one nucleus is important. Under these circumstances the relaxation time actually de-
creases with system size, because as the size of the system increases so do the oppor-
tunities for forming critical nuclei. The relaxation time is given by the sum of the nu-

  (v c 0Nc 0 )d /(d+1) > N >> Nc 0

  v = N 1/ d / v

  (v v )d
= N
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F i g u re 4 . 4 . 5 S e v e ra l
cases of the relaxation of
systems by driven diffu-
sion are illustrated. See
the text for a detailed dis-
cussion. In (a) the system
is larger than the size of a
critical nucleus but small
enough so that only one
nucleation event occurs in
the system. The boundary
is nonnucleating. In (b)
the system is large enough
so that several nucleation
events occur during the re-
laxation; the boundary is
nonnucleating. In (c) the
boundary nucleates the
equilibrium phase. ❚
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cleation time and the time for consumption of the whole system. The latter has been
assumed to be small compared to the former:

(4.4.44)

Thus the scaling of the relaxation time is O(N −1).

If the system is large enough so that more than one nucleation event occurs
(Fig. 4.4.5(b)),then different regions of the material may be treated as essentially de-
coupled. We expect from the analysis of independent systems that the scaling of the
relaxation time is logarithmic.A more detailed analysis given as Question 4.4.3 shows
the scaling is O(ln(N)1/(d +1)). While the analysis in Question 4.4.3 has interesting fea-
tures, the difference between this and O(1) or O(ln(N)) scaling is unlikely to be sig-
nificant.Finally, as with the independent spin model,the relaxation time is indepen-
dent of N if N+ is greater than 1. For convenience we assume that this occurs after the
transition between the regime o f Fig. 4.4.5(a) and Fig. 4.4.5(b), i.e., for systems in
which there are many nucleation events.

Question 4.4.3 Calculate the scaling of the relaxation time when there
are many nuclei formed in a system with N spins with boundaries that

do not affect the nucleation. Assume that all spins are DOWN at the end of
the relaxation. Numerical factors that do not affect the dependence of (N)
on N may be neglected.

Solution 4.4.3 Nucleation sites occur randomly through the system and
then grow and merge together. In order to find the time at which the whole
system will become DOWN, we calculate the probability that a spin at a par-
ticular site will remain UP. A particular spin si is UP at time t only if there has
been no nucleation event in its vicinity that would have grown enough to
reach its site.

The probability that no critical nucleus formed at a position rj with re-
spect to the site si until the time t is given by the probability of a two-state
system with a time constant c 0 remaining in its high energy state or

e−t / c0 (4.4.45)

If we are looking at the spin si at time t , we must ask whether there was
formed a nucleus at a distance r away prior to t ′=t − rj /v . If the nucleus
formed before t ′ then the nucleus would arrive before time t at the site si . The
maximum distance that can affect the spin si is rmax = min(vt,R), where
R∝N 1/d is the size of the system. When there are many nuclei in the system,
then each nucleus is much smaller than the system and R >> vt, so that
rmax = vt. The probability that no nucleus formed within this radius at an
early enough time is given by:

(4.4.46)

  rj

rmax

∏ e
−( t− rj / v )/ c0 = e

− (t− rj / v) / c 0∑

      (N ) = cN + v ≈ cN = c0N c0 / N
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where the product and the sum are over all possible nucleation sites within
a distance rmax.

The sum can be directly evaluated to give:

(4.4.47)

where we divided by the volume of a nucleation site and neglected constants.
The number of sites that remain UP is given by N times Eq.(4.4.46) with Eq.
(4.4.47) substituted in:

(4.4.48)

The coefficient accounts for the numerical prefactors we have neglected.
Requiring that this is a number less than 1 when t = (N) gives the relaxation
time (N) ~ ln(N)1/(d+1) as indicated in the text.

If we consider this same derivation but do not substitute for rmax in Eq.
(4.4.47) then we arrive at the expression:

(4.4.49)

and

(4.4.50)

This more general expression also contains the behavior when we have only
one nucleation event. We can recover this case by substituting a constant
value of rmax = R∝N 1/d. Then the time dependence of N+ is given by the
simple exponential dependence with the relaxation constant (N) =

c 0Nc 0 / r d
max∝1/N. ❚

Nucleating boundary
If the boundary of the system promotes nucleation,the nucleus formed at the bound-
ary will increase by driven diffusion. If there are no other nucleation events
(Fig. 4.4.5(c)) then the relaxation-time scales as (N)~ N 1/d. Since the critical nucleus
forms at the boundary, the system does not have to be larger than a critical nucleus
for this to occur. If the system is large enough so that there are many nucleation
events,then the behavior of the boundary is irrelevant and the same scaling found be-
fore applies.

We have found an anomaly in the intermediate regime characterized by
Eq. (4.4.43). In this regime the relaxation time of a system with a nonnucleating
boundary decreases, while that with a nucleating boundary increases. It should be un-
derstood that for the same microscopic parameters (except at the boundaries),the re-
laxation time is longer in the former case than in the latter.

      N + = Ne− (t −(d d+1)rmax /v)rmax
d

/( c0 N c0 )

      

(t −rj /v)
j

∑ ∝
1

N c 0
(t − r /v)r d−1dr

0

rmax

∫ ∝(t − (d d + 1)rmax /v)rmax
d / N c0

      N + = Ne− (v t )
d +1

/(v c 0N c 0 )

      

(t −rj /v)
j

∑ ∝
1

N c 0
(t − r /v)r d−1dr

0

rmax =vt

∫ ∝(vt)d +1 /(vN c0)
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Summary
In summary, a system of finite size with a driven-diffusion relaxation has a scaling of
the relaxation time with system size as O(aN (d−1)/d

,N − 1; ln(N); 1) for a nonnucleating
boundary, and O(N 1 / d; ln(N);1) for a nucleating boundary. The results are illus-
trated in Fig. 4.4.6.

One interesting conclusion from the results in this section is that we do not have
to create a very complicated model in order to find a relaxation time that grows ex-
ponentially with system size.A ferromagnetic Ising model with a large critical nucleus
is sufficient. What is the significance of this result? The size of the critical nucleus Nc 0

and the nucleation time c 0 are both controlled by the magnitude of h compared to
the interaction strength J. When h is large the critical nucleus is small and the nucle-
ation time is small. In this model h is the driving force for the relaxation; when this
driving force is weak, the relaxation may take arbitrarily long.
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Figure 4.4.6 Schematic plot of the relaxation-time behavior for a system that equilibrates
by driven diffusion (see Figs. 4.4.3–4.4.5). Two cases are shown, the solid line is for a sys-
tem with a boundary that nucleates the stable phase; the dashed line is for a system with a
nonnucleating boundary. When the boundary nucleates the stable phase, the stable phase
grows by driven diffusion. It consumes the whole system in a time that scales with system
size as N1 /d. For this plot, d is taken to be 3. When the boundary does not nucleate the sta-
ble phase, nucleation becomes harder as the system increases in size until it reaches the size
of a critical nucleus. For larger systems, the relaxation time decreases because it becomes eas-
ier to form a critical nucleus somewhere. Independent of the boundary behavior, when a sys-
tem becomes so large that the nucleation time, cN, becomes equal to the time it takes for
driven diffusion to travel the distance between one nucleus and another, v, then the system
reaches the large size (thermodynamic) limit and the relaxation time becomes constant.
Logarithmic corrections that may arise in this regime have been neglected in the figure. ❚
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Our assumption that the relaxation time of an individual spin is rapid should be
discussed in this context. We have seen that the nucleation time can become longer
than the experimental time. In overcoming the nucleation barrier, the formation of a
nucleus is like the relaxation of a two-state system. What we have done,in effect,is to
group together a region of spins that is the size of a critical nucleus,and treat them as
if they were a single spin. This is a process of renormalization as discussed in
Section 1.10. The nucleation time becomes the effective local relaxation time.Thus we
see that if the field h is small enough,the effective local relaxation time increases.Even
though the ultimate behavior of the system is that of growth by driven diffusion of
the stable phase, the relaxation is inhibited locally. This leads to the persistence of the
metastable phase.One example of a system where equilibration is inhibited by a long
local relaxation time is diamond. Diamond is a metastable phase under standard con-
ditions. The stable phase is graphite.

The second intere s ting con clu s i on is the import a n ce of the bo u n d a ry con d i ti on s
for the scaling beh avi or. It is parti c u l a rly intere s ting that the new scaling beh avi or,N 1/ d,
a rises on ly for the case of nu cl e a ti on by the bo u n d a ry of the sys tem . The scaling be-
h avi or of a sys tem with non nu cl e a ting bo u n d a ries is qu i te differen t , as discussed above .

The model of nucleation and growth of the stable phase has played an important
role in conceptual discussions of protein folding. Various theoretical and experimen-
tal efforts have been directed at identifying how nucleation and growth of secondary
and tertiary structure of proteins might occur. Of particular significance is that it al-
lows interdependence through interactions, and yet can allow relaxation to proceed
in a reasonable time. From our discussion it is apparent that nucleating boundaries
are beneficial. Our treatment of nucleating boundaries is a mechanism for including
the effect of certain system inhomogeneities. While we will consider nucleation and
growth more generally in the context o f inhomogeneous systems, we will not gain
much further insight. The central point is that when there are predetermined nucle-
ation sites, at a boundary or internally in the system, the relaxation of a system into
the stable state can proceed rapidly through driven diffusion. This behavior occurs
when the interactions in the system are cooperative,so that locally they reinforce both
the metastable and stable phases. It is easy to imagine particular amino acids or amino
acid combinations serving as nucleation sites around which the 3-d structure of the
protein forms. In particular, the formation of an -helix or -sheet structure may nu-
cleate at a particular location and grow from there.

Our discussion of nucleation and growth takes care of almost all cases of relax-
ation in homogeneous systems when the interactions are short-ranged and there is a
well-defined ground state in the bulk—away from the boundaries. We can,however,
have a well-defined ground state of the system even if the bulk ground state is not
well-defined,if the boundary conditions impose the ground state. This is the subject
of the next section.

4.4.4 Boundary-imposed relaxation
We have been careful to consider cases in which the energy of the state with all spins
DOWN, {si = −1}, is lower in energy than any other state,and in particular of the ini-
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tial state with all spins UP, {si = +1}. In a system with ferromagnetic interactions,if the
energies of the initial and final states are equal, then there are two ground states. In
the homogeneous model this is the case where h = 0. In general, the existence of two
ground states is counter to our assumptions about relaxation to a unique ground
state. However, we can still have a unique ground state if the boundaries impose 
si = −1. Such boundaries mean that the ground state is uniquely determined to be
{si = −1}, even though h = 0.

In the absence of additional nucleation events, such a system would equilibrate
by inward diffusion of the interface between the UP interior and the DOWN border, as
in Fig . 4.4.5(c). There is no bulk driving force that locally causes the UP region to
shrink. The only driving force is the interface energy (surface tension) that causes the
interface to shrink. We can treat the system as performing a driven random walk in
the number of UP spins. However, we must treat each part of the boundary as mov-
ing essentially independently. The rate of change of the average number of UP spins
N+(t) is given by the boundary velocity times the boundary length:

(4.4.51)

The velocity of a driven random walk is (from Eq. (1.4.58) and (1.4.60))

(4.4.52)

From Fig. 1.4.5 we can see that (∆E+ − ∆E−) is the energy difference between steps. A
single step changes the number of UP spins by one, so

(4.4.53)

where E(N+(t)) ∝ N+(t)(d −1) /d is the average surface energy for a cluster with N+(t) UP

spins. Since the single-step energy difference decreases with the number of UP spins,
we can assume it is small compared to kT. We can then expand the exponential inside
the parenthesis in Eq.(4.4.52) and substitute the resulting expression for the velocity
into Eq. (4.4.51) to obtain

(4.4.54)

The negative sign is consistent with the decreasing size of the region of UP spins. We
integrate Eq.(4.4.54) to find the dependence of the relaxation time on the size of the
system:

(4.4.55)

The final expression is valid even in one dimension, where the boundary executes a
random walk because there is no local preference of the boundary to move in one di-
rection or the other and (N) ∝ N 2.

(N ) ∝ −
N

0

∫ N+ (t) (2 −d) /d dN+ (t) = N 2/ d

    

dN+ (t)

dt
≈ −

a

kT
e −∆E + / kT (∆E + − ∆E− )N +(t)(d−1)/ d ∝ −N + (t)−(d−2)/d

    
(∆E + − ∆E− ) = E(N +(t)) − E(N +(t) −1) ≈

dE(N +(t))

d(N +(t))
∝N +(t)−1/ d

      v = a (e − ∆E+ /kT − e −∆E− /kT ) = a e −∆E + /kT(1 −e (∆E +− ∆E− )/kT )

      

dN+ (t)

dt
∝vN +(t)(d−1)/ d
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In this discussion we have ignored the possible effect of the nucleation of regions
of DOWN spins away from the boundary of the system.One way to understand this is
to note that the size of a critical nucleus is infinite when h = 0. Nucleation may only
change the relaxation behavior when the interface between UP and DOWN spins is not
well-defined. Otherwise, nucleation does not help the relaxation, since any region of
DOWN spins inside the region of UP spins will shrink. Thus, for the case where the
boundary determines the ground state, the relaxation is O(N 2/d).

It is also possible to consider the case where h is positive and the bulk preference
is to have all of the spins UP. However, the boundary imposes all si =−1,and the com-
petition between the bulk and boundary energies still results in all of the spins in the
ground state being DOWN. This occurs for systems where h is much smaller than J > 0,
so that the influence of the boundary can extend throughout the system. The energy
at the interface is bN+(t)d /d + 1 where b ∝ J is a local measure of the boundary energy.
The bulk energy is −2hN+(t)d. The latter must be smaller in magnitude than the for-
mer. As N+(t) becomes smaller, the bulk energy becomes still smaller compared to the
interface energy. Thus we can neglect the bulk energy in calculating the relaxation
time, which scales with N as if h = 0.

4.4.5 Long-range interactions
When interactions have a range comparable to the system size,the possibility of defin-
ing interior and exterior to a domain does not generally exist. If we assume a long-
range ferromagnetic interaction between spins so that Jij = J, for all i and j, the energy
of the system is

(4.4.56)

There is a difficulty with this expression because the energy is no longer extensive
(proportional to N) since the second term grows as N 2 when all the spins are aligned.
As discussed in Section 1.6, for many calculations the long-range interactions are
scaled to decrease with system size, J ~ 1 /N, so that the energy is extensive. However,
it is not obvious that this scaling should be used for finite systems. If we keep h and J
fixed as the system size increases,then,as shown below, one term or the other domi-
nates in the energy expression.

We can solve Eq. (4.4.56) directly by defining the collective variable

(4.4.57)

Substituting this into the energy gives:

(4.4.58)

The term NJ /2 , wh i ch is indepen dent of M, accounts for the missing i = j terms in
Eq .( 4 . 4 . 5 6 ) . It does not affect any of the re sults and can be negl ected . Adding the en tro-
pic con tri buti on from Secti on 1.6 to obtain the free en er gy as a functi on of M we obt a i n

E({si}) = −hM − 1
2 JM 2 + NJ / 2

M = si
i

∑

E({si}) = −h si
i

∑ − J 1
2 sis j

i≠ j
∑
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(4.4.59)

(4.4.60)

The exact substitution of the collective variable M for the many variables si indicates
that this system reduces to a single-variable system. The maximum value of M in-
creases linearly with N. In the following we show self-consistently that M itself grows
linearly with N, and obtain the relaxation-time scaling.

Assuming that M grows linearly with N, the first and third terms in the free en-
ergy grow linearly with N. The second term 1

2 JM 2, describing interactions, grows qua-
dratically with N. For small enough N the interaction term will be insignificant com-
pared to the other terms, and the system will become essentially decoupled. For a
decoupled system M must grow linearly with N. The relaxation time is also the same
as the relaxation time of a decoupled system.

For N larger than a certain value,the terms that are linear in N become negligi-
ble. Only the interaction term is important. All of the spins must be either UP or
DOWN in order to minimize the free energy. This also implies M grows linearly with
N. There is a small energy difference between UP and DOWN that is controlled by the
value of h. However, to switch between them the system must pass through a confor-
mation where half of the spins are UP and half are DOWN. The energy barrier,
F(M = 0) − F(M = N) = JM 2 /2,scales as N 2. Because the barrier grows as N 2 the re-
laxation time grows as eN 2

. Thus the system is frozen into one state or the other. We
can still consider raising the temperature high enough to cause the system to flip over
the barrier. In this case, however, the difference in energy between UP and DOWN is
not enough to force the system into the lower energy state.

Including the small system regime, where the long-range interactions are not rel-
evant, and the large system regime, gives a relaxation-time scaling of O(ln(N),eN 2

).
We see that even simple models with long-range interactions have a relaxation time
that scales exponentially with system size. Another conclusion from this section is that
in the presence of long-range interactions, the relaxation-time scaling does not de-
crease as the system size increases. This behavior was characteristic of systems that
have short-range interactions.

It is interesting to consider what would happen if we scale the interactions
J ~ 1/N. Since all the energies are now extensive, the free-energy barrier would grow
linearly in the size of the system and the relaxation time would grow exponentially
with the size of the system.Starting from all of the spins UP, the system would rapidly
relax to a metastable state consisting of most of the spins UP and a fraction of DOWN

spins as determined by the local minimum of the free energy. This relaxation is fast
and does not scale with the system size.However, to flip to the ground state with most
of the spins DOWN would require an O(eN) relaxation time.

We could also consider decaying interactions of the form

(4.4.61)

(4.4.62)J(x) ∝ x p

    
E({si }) = −h∑ s i − ∑ J(|ri −rj |)s is j

s0 (x) = k{ln(2) − 1
2 (1+ x)ln(1 + x) + (1 − x)ln(1 − x)}

F(M) = −hM − 1
2 JM 2 − TNs0(M / N)
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For p <−1 this is essentially the same as short-range interactions, where there is a well-
defined boundary and driven diffusion relaxation. For p > 1 this is essentially the same
as long-range interactions with exponential relaxation time. p = 1 is a crossover case
that we do not address here.

Inhomogeneous Systems

In the general inhomogeneous case, each spin has its own preference for orientation
UP or DOWN, determined by its local field, hi , which may be positive or negative. This
preference may also be overruled by the interactions with other spins. We begin,how-
ever, by reconsidering the decoupled or essential ly decoupled model for inhomoge-
neous local fields and relaxation times.

4.5.1 Decoupled model—barrier and energy 
difference variation

There are two ways in which inhomogeneity affects the decoupled model. Both the
spin relaxation time, i , and the energy difference E+i = −2hi , may vary between spins.
Analogous to Eq. (4.4.10), the average number of UP spins is given by:

(4.5.1)

For a distribution of relaxation times P( ) this can be written as:

(4.5.2)

We are assuming that P( ) does not depend on the number of spins N. The relaxation
time of the system is defined so that all spins relax to their ground state. It might seem
natural to define the system relaxation time (N) as before by Eq. (4.4.11) or
Eq. (4.4.16):

(4.5.3)

However, allowing an additional factor of e −1 spins that are unrelaxed can cause prob-
lems in the inhomogeneous model that were not present in the homogeneous case.
When there is only one microscopic relaxation time,the existence of nonequilibrium
residual UP spins can be considered as a small perturbation on the structure, if they
are a smaller fraction of spins than the equilibrium UP spins. There is no special iden-
tity to the spins that have not yet relaxed. In the present case, however, the spins with
longest relaxation times are the last to relax. It is best not to assume that the structure
of the system is relaxed when there are specific spins that have not relaxed. This leads
us to adopt a more stringent condition on relaxation by leaving out the e−1 i n
Eq .( 4 . 5 . 3 ) , N+( (N)) = N+(∞) + Nr . Combining this with Eq. (4.5.2) we have:

(4.5.4)
    
N r = N d P( )∫ e − (N )/

N+ ( (N)) = (1 + e−1)N+ (∞) + Nr

N+ (t ) = N d P( )∫ e−t / + N+ (∞)

N+ (t ) =
i

∑ P(si = −1;t) ≈
i

∑ e−t / i + e−E +i / kT[ ] =
i

∑ e−t / i + N+ (∞)

4.5
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where Nr is a number that should be less than one, or for definiteness we can take
Nr ≈ 0.5, as in Eq. (4.4.19).

One way to understand Eq.(4.5.4) is to let all of the spins except one have a re-
laxation time 1. The last one has a relaxation time of 2. We ask how does the relax-
ation time of the final spin affect the relaxation time of the whole system. The relax-
ation of the spins with 1 is given by the usual relaxation time of a system of N spins
(Eq. (4.4.17)). If the relaxation time of the final spin is shorter than this, it does not
affect the system relaxation time. If it is longer, then the system relaxation time will be
determined by 2. Thus spins with long relaxation times,almost as long as the relax-
ation of the whole system,can exist and not effect the relaxation time of the system.
The conclusion is more general than the decoupled model.A realization of this in pro-
tein folding is the amino acid proline. Experimental studies indicate that proline has
two conformations that correspond to cis and trans isomers. The conversion of one
form to the other has been found to limit the time of folding of particular proteins.
We note that the temperature at which the folding is done can play a role in the rela-
tive importance of a single long relaxation time as compared to the relaxation of the
rest of the system. When a single relaxation time is large in comparison to the relax-
ation of other spins,it becomes proportionately even larger as temperature is lowered
(Question 4.5.1). The existence of the long proline relaxation time is consistent with
a rule of thumb that nature takes advantage of all possibilities. Since it is possible for
such a long relaxation time to exist, it does.

Question 4.5.1 Assume all of the spins in a system except one have a re-
laxation time of 1 and the last one has a relaxation time of 2. Show that

if the last spin has the same relaxation time as the rest of the spins together,
at a particular temperature,then it is slower at lower temperatures and faster
at higher temperatures.

Solution 4.5.1 The key point is that the relaxation times depend exponen-
tially on the temperature and the large relaxation time will change more
rapidly with temperature than the smaller one. The ratio of relaxation times
of individual spins as a function of temperature is given by:

(4.5.5)

where EB1 and EB2 are the barrier energies for the respective relaxation
processes. In order for the relaxation time of the last spin to be relevant we
must have EB2 > EB1. As a function of temperature,the ratio increases expo-
nentially with decreasing temperature:

(4.5.6)

where T0 is a reference temperature.
We are interested in comparing the relaxation time of N − 1 ≈ N spins

whose individual relaxation time is 1(T), with the relaxation of one spin

2 (T ) / 1 (T ) = 2 (T0 )/ 1(T0)( )T0 T

2 (T ) / 1 (T ) = e−E B2 / kT / e−E B1 / kT = e−(EB2 −E B1) /kT
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whose individual relaxation time is 2(T). Thus we are concerned with the
quantity:

(4.5.7)

where we write 1(T,N), as the relaxation time of N spins whose individual
relaxation time is 1. We have used the expression for this relaxation time ob-
tained from the decoupled spin model of Section 4.4.1. This is not essential;
as discussed below the result really only depends on having 2(T0)/ 1(T0)
>> 1.

Since we are given that the last spin has the same relaxation time as
the rest of the spins together at the reference temperature T0 , i.e.,

2(T0)/ 1(T0,N) = 1 evaluating Eq. (4.5.7) at T = T0 we have that:

(4.5.8)

Considering this relaxation time ratio as an expression for ln(N), we substi-
tute Eq. (4.5.8) and Eq. (4.5.6) into Eq. (4.5.7) to find that:

(4.5.9)

which implies the desired result.For T > T0 this ratio is less than one,and for
T < T0 this ratio is greater than one.

For the decoupled mo del, because the relaxation time increases only
slowly with the number of spins,the ratio of the relaxation times in Eq.(4.5.8)
is not very large, so that the temperature dependence of the ratio of relax-
ation times will also not be strong, even though it is exponential. However,
Eq. (4.5.9) is more general. We can understand this by allowing the rest of
the system to interact, except for the individual spin.Our conclusions hold
as long as the relaxation of the interacting spins depends on a large number
of hops over barriers. These interacting spins give rise to a relaxation time

1(T, N) that depends on the number of spins as some function of N. The
consequence in the above equations would only be to replace ln(N) with this
function of N. Eq. (4.5.9) would be unaffected. The ratio of individual spin
relaxation times at a reference temperature, ( 2(T0)/ 1(T0)), could even be
determined empirically. Moreover, if a single barrier has a relaxation time of
the same duration as the rest of the protein, the conclusion is immediate.
Since microscopic relaxation times of a single degree of freedom can be as
small as 10−10 seconds,and that of the protein is of order 1 second,the ratio
between the two relaxation times is large and Eq.(4.5.9) would imply a rapid
dependence of the relaxation time ratio with temperature. ❚

The more general case of an arbitrary distribution of individual spin relaxation
times P( ) in Eq.(4.5.4) can lead to arbitrary scaling of the total relaxation time with
the number of spins. Intuitively, there appears to be a problem with this statement,
since the spins are independent. How can the relaxation time grow arbitrarily if we

2 (T ) / 1 (T, N ) = 2 (T0 ) / 1(T0 )( )(T0 T )−1

2(T0 ) / 1(T0 )( ) = ln(N )

2 (T ) / 1 (T, N ) ≈ 2 (T )/( 1(T)ln( N ))
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only, say, double the system size? The reason that the relaxation time can grow arbi-
trarily is that when we increase the system size,there is a greater chance for spins with
longer relaxation times to occur. It is the addition of spins in the tail of the distribu-
tion of probabilities P( ) that controls the scaling of the relaxation time of the system.
However, if we only have a few different relaxation times corresponding to a limited
number of types of amino acids,then increasing the system size cannot change the re-
laxation time more than logarithmically with the system size.Thus,if the distribution
of spin relaxation barriers is relatively narrow or is composed of a number N of nar-
row dist ributions, where N << N, then we will still have the characteristic scaling
O(ln(N ); 1). This will be assumed for the remaining inhomogeneous models.

From Eq . (4.5.4) we see that va ri a ti ons in E+i , while keeping i f i xed , do not affect
the scaling of the rel a x a ti on time in the deco u p l ed model . If we retu rn to a con s i dera-
ti on of the basic properties of rel a x a ti on there are two points that imply this con clu-
s i on . The first is the ef fect of E+i on the rel a x a ti on ra te of an indivi dual spin. The re-
l a x a ti on ra te of an indivi dual spin can be affected on ly if the differen ce in en er gy
bet ween the two states becomes very small . Even in this case, the ch a n ge can be at most
a factor of 2 (see Eq .( 1 . 4 . 4 4 ) ) . A factor of 2 is not parti c u l a rly important wh en we con-
s i der rel a x a ti on - time scaling. The second point is that in gen eral we do not all ow the
va lue of E+i to become very small because of our assu m pti on that almost all of the spins
relax to their ground state . Thus the impact of va ri a ti ons in E+i should be negl i gi bl e .

Our discussion in this secti on of the ef fect of va ri a ti ons in i and E+i is valid also
in the case of the essen ti a lly deco u p l ed model , wh ere interacti ons are all owed bet ween
spins as long as the interacti ons do not affect wh i ch of the states of a particular spin is
the lowest en er gy. In ad d i ti on to all owing va ri a ti ons in i and E+i , we can also all ow in-
h om ogen eous interacti ons bet ween spins. In Secti on 4.4.2, in the hom ogen eous case,
it was natu ral to assume that the para m eters m a x and E+m i n do not ch a n ge with sys tem
s i ze . In the inhom ogen eous case this assu m pti on is less natu ra l . However, on ce this as-
su m pti on is made , the arguments pre s en ted in Questi on 4.4.2 proceed as before .

More significant for our interests is that the inhomogeneous case provides new
models that retain the same relaxation-time scaling as the decoupled model.
Specifically, it is possible for interactions to affect the minimum energy conformation
of particular spins without changing the relaxation-time scaling. This is the topic of
the next section.

4.5.2 Space and time partition (decoration of the 
decoupled model)

The next inhomogeneous model includes interactions that change the minimum en-
ergy state of particular spins. In the homogeneous case this led immediately to mod-
els with relaxation controlled by nucleation and growth. In the inhomogeneous case
there is a richer analysis.Our first objective is to construct a generalization of the de-
coupled model that still relaxes with the same scaling. This can happen because, even
if a few spins start out with their local equilibrium being UP, as long as the other spins
have their equilibrium as DOWN the few spins will relax DOWN once the rest have. We
can generalize this systematically. The idea that we will develop in this section is that
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an inhomogeneous system may be constructed so that it can be partitioned in space
and time. The partitioning results in a finite collection of subsystems. We can then
relate the relaxation of the whole system to the relaxation of each of the subsystems,
and to the behavior of the subsystems as N increases. Partitioning the system in space
and time is closely related to the discussion of subnetworks in Chapter 2. Partitioning
in space is directly related to the discussion of subdivision in attractor networks, while
partitioning in time is more loosely analogous to the discussion of feedforward
networks.

It is useful to consider again the conceptual framework of renormalization dis-
cussed in Section 1.10. In essence the subsystems that we will construct are decoupled
relaxing variables. They act like individual spins in a decoupled model. We can think
about renormalizing the system by grouping together all of the spins in each subsys-
tem.Each subsystem is then replaced by a single spin, with a relaxation time equal to
the relaxation time of the original subsystem. The result of the renormalization is a
decoupled system of spins. Another way to think about this is to invert the process of
renormalization. This inverse process is called decoration. Starting from the d ecou-
pled model, we decorate it by replacing each spin with a subsystem formed out of
many spins.

Space partitioning is the separation of the whole system into subsystems. We im-
pose a much more stringent form of separation than that in Chapter 2. Within each
subsystem the values of the spins may affect each other’s minimum energy state but
they do not affect the minimum energy state of spins in other subsystems. This does
not mean that there are no interactions between spins in different subsystems, only
that they are not strong enough to matter. The whole system then relaxes according
to the combination of relaxation times of each subsystem combined as in the decou-
pled case, specifically Eq. (4.5.4). However, the distribution of relaxation times P( )
may now depend directly upon N.

As N increases, either the number of subsystems or the size of subsystems
grows. If the size of the subsystems does not grow with N, the internal behavior of
each subsystem does not affect the scaling of the relaxation time of the whole sys-
tem. The relaxation of the system depends only on the distribution of relaxation
times of the subsystems, exactly as Eq.(4.5.4) describes the relaxation in terms of in-
dividual spins. If the number of subsystems does not change and the subsystems
grow linearly with N, then the relaxation-time scaling of the whole system follows
the relaxation-time scaling of the subsystem with the longest relaxation time. Unless
special circumstances apply, this would correspond to the highest scaling. There are
other possible ways for the growth of the system with N to be distributed between
subsystem growth and growth of the number of subsystems. They can be analyzed
in a similar manner.

Time partitioning implies that some spins know their equilibrium conformation
from the start. When they are equilibrated,their effect on the remainder causes some
of the remaining spins to relax. Then a third set of spins relax. The dynamics is like a
row of dominoes. This can be illustrated first by considering only two subsystems. Let
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(4.5.10)

Thus, W2 is the set of si such that E+i({sj}j ≠ i ) can be negative. If all si in W2 are in
some sense independent of each other, then the relaxation of the system will still
scale as O(ln(N);1). This is because the spins in W1 relax first, then the spins in W2

relax. The condition of independence of spins in W2 that we ne ed to impose has to
do with which spins can affect the sign of their energy E+i({sj}j ≠ i). Specifically, the
spins whose state can affect the sign of E+i({sj}j ≠ i) must all be in W1, not W2. This
implies that only relatively weak interactions exist between two spins in W2. If this is
true, then consider all spins in W1. These spins satisfy the conditions of the essen-
tially independent model, so their relaxation takes at most O(ln(N);1) time. Once
these have flipped DOWN, the remaining UP spins, all of which must be in W2, are
decoupled and therefore must satisfy E+i ({sj}j ≠ i)>0. Since they satisfy the conditions
of the essentially independent model, they also relax in O(ln(N); 1). The total relax-
ation is (at most) the sum of these relaxation times and so is also O(ln(N);1). In
summary, the relaxation scaling does not depend on spins that prefer to be UP for
some arrangements of their neighbors, if none of their neighbors have this property
at the same time as they do.

The partitioning of the system into two subsystems that relax sequentially can
be generalized to a finite number of subsystems. If the spins of a system can be
partitioned into a finite set of subsystems {Wk}, such that for a spin si of set
Wk , E+i({sj}j ≠ i)>0 when all the sj = −1 in sets W1,. ..,Wk−1, then the system relaxes in
O(ln(N);1). This follows because the subsystems relax sequentially, each in
O(ln(N);1).One may think about the subsystems as illustrated in Fig. 4.5.1.Each suc-
cessive circle denotes the boundary of a subsystem. The smallest region relaxes first,
followed by the next larger one. The scaling O(ln(N);1) for the whole system follows
from the scaling of each subsystem in O(ln(N);1), when the number of subsystems is
assumed to be independent of N. It is also possible to construct models where the
number of subsystems grows with N. For specific assumptions about how the num-
ber of subsystems changes with N, the relaxation-time scaling can be determined.

A better way to describe the partitioned model uses a concept of the neighbor-
hood of a spin. (The definition of “neighborhood” used in this section does not sat-
isfy the conditions necessary to give a topology on the space.) For statistical fields,
the physical distance is not particularly significant; it is the magnitude of the inter-
action between spins that determines the effective proximity. For the nearest-
neighbor Ising models in Section 1.6, we determine interactions by using a spatial
arrangement of spins and assign equal interactions to the nearest neighbors. For a
cubic lattice, the number of nearest neighbors is directly related to the dimensional-
ity (z = 2d). Other lattices give different numbers of neighbors. More generally, we
can define the neighbors of a spin si as the spins sj that can change the minimum en-
ergy state of the spin si .

    W2 = {s i min(E+ i({s j } j≠i ))≤ 0}

    W1 = {s i min(E +i ({s j} j≠i )) > 0}
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Let a neighbor sj of a spin si be a spin that can affect the minimum energy con-
formation of si . Let the neighborhood Ui of si be the set of its neighbors. Then the
neighborhood of an arbitrary set of spins is the union of the neighborhoods of all its
members. We can summarize the results of time partitioning by recognizing that the
definition of Wk implies that a spin si in Wk must have all of its neighbors in the
subsystems W1,. . .,Wk–1. Thus, time partitioning corresponds to a set of subsystems
Wk such that the neighborhood of Wk is contained entirely in W1,. . .,Wk–1. For such a
system the relaxation time is O(ln(N);1).

We follow a chain of seemingly natural definitions. The interior W I of a set W is
the set of spins whose neighborhoods are entirely contained in W. The exterior W E of
a set W is the set of spins whose neighborhoods do not intersect W. The boundary W B

of a set W is the set of spins that are not in its interior or exterior (spins whose neigh-
borhoods intersect but are not entirely contained withinW ). For the time-partitioned
model,all subsystems Wk are contained in their own exterior, Wk⊂ W k

E. This unusual
conclusion points to the difference between our neighborhoods and the usual con-
cept of neighborhood. It is rooted in a fundamental asymmetry in our definition of
“neighbor”.

Time partitioning depends on an asymmetric neighbor relationship. If sj is a
neighbor of si, then si does not have to be a neighbor of sj . This arises through inho-
mogeneity of the local fields hi that make Jij have a different significance for si than for
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sj . The spins with the largest values of hi tend to be in Wk with lower values of k. A spin
in W1 must have a large enough hi so that it dominates all of the interactions and there
are no spins in its neighborhood.

The definition of “neighborhoods” enables us also to summarize space parti-
tioning. The partitioning of space corresponds to a partitioning of the system into
disjoint neighborhoods. The neighborhood of each subsystem does not intersect any
other subsystem. Thus,in this case, we can say that each subsystem is the same set of
spins as its own interior. Space partitioning can result from both inhomogeneous in-
teractions and fields.

The model of decorated independent relaxation with both spatial and temporal
subsystems is attractive as a model of the relaxation in protein folding. The existence
of secondary structure, with limitations on the size of secondary-structure elements,
suggests that secondary-structure elements may form first. Moreover, each of them
may form essential ly independently of the others. This would correspond to space
partitioning. Each set of coordinates that change and cause the formation of a partic-
ular secondary-structure element would be a single subsystem. All of these together
would be included in the same time partition. Then there is a second stage of relax-
ation that forms the tertiary structure. The coordinates that control the formation of
the tertiary structure would constitute the second time partition. It is possible, how-
ever, and even likely, that during the second stage in which tertiary structure is
formed, some of the secondary structure also changes.

4.5.3 Nucleation and growth in inhomogeneous fields
Diffusive equilibration can be generalized to the inhomogeneous case. General con-
clusions can be reached by relatively simple considerations;a complete analysis is dif-
ficult. Nucleation and growth is a model that applies when nucleation is a relatively
rare event, so that only one critical nucleus forms in a large region. After the critical
nucleus is formed, the region of the stable phase grows by driven diffusion of the
boundary between the stable and metastable phases. In order to have a diffusive in-
homogeneous system,the interactions between spins Jij must be important compared
to the variation in the local field, hi , and the interactions must be essentially local and
uniform. Inhomogeneities tend to enhance nucleation and inhibit diffusion of the
boundaries between stable and metastable phases.Thus,increasing the inhomogene-
ity tends to reduce the relevance of nucleation and growth. We will discuss more
specifically the effect of variations in hi and Jij , and then the effect of inhomogeneity
in general, on the scaling of the relaxation time.

Inhomogeneities of the local fields hi cause variations in the local strength of
preference for the stable and metastable phases. Regions that have a larger average
negative hi will tend to nucleate before regions of a smaller average negative hi. Since
the problem is to form a nucleus somewhere, in contrast to the rare nucleation in a
homogeneous system, this variation increases the rate of nucleation. The eff ect of
variation in hi on diffusion of a boundary between stable and metastable phases oc-
curs through local variation in the driving force. Sites that have a larger than average
negative hi tend to increase the boundary velocity v, while sites of lower than average
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negative hi tend to decrease the boundary velocity. The boundary must sweep through
every site. Moreover, there is no bound on how long the boundary can be delayed,so
the sites that slow it tend to trap it. Thus, on average the velocity is reduced.

Inhomogeneities of the interactions Jij cause similar variations in nucleation and
diffusion. Smaller values of Jij make nucleation easier and the boundary diffusion
slower. Conversely, larger values of Jij make nucleation harder and the boundary
diffusion faster. Since nucleation can occur anywhere while diffusion must sweep
through everywhere, again the nucleation rate is increased while the diffusion rate is
reduced.

For the case of nonnucleating boundaries,the effect on relaxation time is partic-
ularly significant. The time necessary to form a critical nucleus is apparent in the
relaxation-time scaling behavior as a peak in Fig. 4.4.6. With the introduction of in-
homogeneities, the peak will decrease in height. For the case of nucleating bound-
aries,the relaxation time is controlled by the diffusion rate and so the relaxation time
will increase. For both cases,the transition to the thermodynamic limit, where the re-
laxation time is independent of N, will occur at smaller system sizes. This occurs be-
cause the increasing nucleation rate and decreasing diffusion rate causes the typical
size to which one nucleus grows—which is the size of independently relaxing parts of
the system—to decrease.

Another consideration in the discussion of diffusive relaxation in inhomoge-
neous fields is the structure of the boundary. In the presence of inhomogeneities,the
moving boundary becomes rougher due to the inhomogeneities that slow and speed
its motion. As long as the bulk energy dominates the boundary energy, it will remain
smooth;however, when the variation in boundary energy becomes large enough,the
boundary will become rough and the dynamic behavior of the system will change.
Since we have limited ourselves to considering smooth boundaries, our discussion
does not apply to this regime.

As briefly discussed in Section 4.4.3, the model of diffusion in variable fields is
likely to be of relevance to understanding the local properties of protein folding in the
nucleation and growth of the secondary structure. If this applies locally to each of the
segments of secondary structure separately, then the scaling of this relaxation is not
necessarily relevant to the folding as a whole. However, it is relevant to our under-
standing of the local kinetics by which secondary structural elements are formed.

4.5.4 Spin glass
There have been some efforts to describe the problem of protein folding in terms of a
spin glass model and spin glass dynamics. Spin glasses are treated using models that
have long-range random interactions between all spins (Section 1.6.6):

(4.5.11)

The difficulty with this model is that many of the properties of spin glasses do not ap-
ply to proteins.Spin glasses have many degenerate ground states,the number of which
grows with the size of the system. This means that there is no unique conformation

E[{si}] = −
1

2N
J ij sis j

ij
∑
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that can be identified with the folded state of the protein. Choose any conformation,
the system will spend much more time in dramatically different conformations be-
cause of the essential degeneracy of ground states. Moreover, the barriers between
low-lying states also grow with the size of the system. Thus, the relaxation time be-
tween any of the low-lying states grows exponentially with system size. Even the con-
cept of equilibration must be redefined for a low temperature spin glass, since true
equilibration is not possible. What is possible is a descent into one of the many low-
lying energy states. If we model a particular set of interactions Jij as being specified by
the primary structure of a protein, there would be no correlation between low-lying
states reached by different proteins with the same primary structure. This is in direct
contrast to protein folding, where a unique (functional) structure of the protein must
be reached.

Despite the great discrepancy between the phenomenology of spin glasses and
the protein-folding problem,there are reasons for considering this model. The use of
a spin glass model for protein folding is based on the understanding that many pos-
sible bonding arrangements between amino acids are possible. For a sufficiently long
chain there are many compact conformations of the chain where different bonding
arrangements are found. There is always an inherent frustration in the competition
between different possible bonding arrangements of the amino acids. This frustra-
tion is similar to the frustration that is found in a spin glass. Because of this, in the
very long chain limit, the spin glass model should become relevant. In this limit the
frustration and multiple ground states are likely to be the correct description of the
chain.

However, as discussed in Section 4.4.5, even when there are long-range interac-
tions, the local fields, hi, can be more important than the interactions, Jij , for small
enough systems. In an inhomogeneous system we can expand the term “local field” to
include the effect of local interactions:

(4.5.12)

where the second sum describes the near-neighbor interactions and the third de-
scribes the long-range interactions. Long-range interactions that give rise to frustra-
tion may not dominate over local interactions. There are many different energies in
the problem of protein folding. The analog of local interactions in Eq.(4.5.12) are the
interactions between amino acids near each other along the chain, not interactions
that are local in space. Hydrogen bonding between different parts of the chain, even
though it is local in space,can give rise to frustration. Note that the -helix structure
is constructed entirely out of short-range interactions, while the -sheet structure is
formed out of a combination of short-range and long-range interactions.

There is a difference between bonding between different parts of the amino acid
chain and long-range interactions in an Ising model. Although there are many possi-
ble hydrogen bond interactions between amino acids,these interactions are quite re-
stricted. The number of amino acids that can interact with a particular amino acid at
any one time is limited. Moreover, the chain structure restricts which combinations

    

E({si }) = − hi si∑ −
1

2
J ij sis j

<ij>
∑ −

1

2
′ J ijs is j

ij
∑
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of amino acids can interact at one time. These limitations do not eliminate the prob-
lem of frustration for very long chains. They do, however, increase the chain length at
which crossover occurs,from the regime in which local interactions dominate, to the
regime in which long-range interactions dominate. It is the latter regime which is a
candidate for the spin glass model.

Our discussion implies that pro teins are fundamen t a lly re s tri cted in thei r
l en g t h , and that a tre a tm ent of t h eir dynamics should inclu de this finite len g t h
re s tri cti on . From ex peri m ent we know that each el em ent of the secon d a ry stru c-
tu re has a limited nu m ber of amino ac i d s , and the nu m ber of s econ d a ry - s tru c-
tu re el em ents in the pro tein is also limited . These ob s erved limitati ons on pro tei n
s i ze are con s i s tent with our discussion of the rel a tive import a n ce of l ocal fiel d s
and lon g - ra n ge interacti on s .S tru ctu ral fru s tra ti on due to lon g - ra n ge interacti on s
must limit the size of pro teins to the regime in wh i ch local fiel d s , or more gen er-
a lly local interacti on en er gi e s , a re import a n t . It should be assu m ed that pro tei n s
ex tend up to their maximal po s s i ble size . Thu s , the largest pro teins are likely to be
at the cro s s over point wh en both short - ra n ge and lon g - ra n ge interacti ons com-
pete . This com peti ti on should then play an important role in the rel a x a ti on - ti m e
s c a l i n g.

The assumption of frustration in the long-range interactions appears to be the
opposite of the cooperative bonding that has been found in proteins. Cooperative
bonding is equivalent to long-range ferromagnetic interactions that enhance the sta-
bility of the ground state.Frustration implies that different bonds are competing with
each other. It is possible to argue that the low-energy states of the spin glass represent
cooperative action of many bonds and therefore constitute cooperative bonding. On
the other hand, proteins are engineered, so that we would expect that bonds are de-
signed to reinforce each other and cooperatively lower the energy of the folded state
to increase its stability. This is unlike the random spin glass model. This notion of en-
gineered cooperativity leads us to consider the engineered spin glass, which is more
typically used as a model of neural network memory.

4.5.5 Engineered spin glass—neural network
Neural networks (Chapter 2) have been modeled as engineered spin glass systems (the
attractor network) where energy minima of the system are specified. This might be
considered to be analogous to the engineering of the 3-d structure of a folded protein
by selection of the amino acid sequence. In the attractor network, the interactions Jij

determine the minimum energy states. In our discussion of protein folding in this
chapter, it is largely the local fields hi that determine the minimum energy state.One
of the differences is that the attractor network cannot have a unique ground state—
the inverse of a state has the same energy.

The simplest way to model the engineered spin glass is through the Mattis model
(Question 1.6.12). In this model a particular state is determined to be a ground state
using only interactions Jij and no local fields hi. We can redefine all of the spins in the
ground state to be si = −1. Then the Mattis model is equivalent to the long-range fer-
romagnetic Ising model with no external field, h = 0,and all Jij = J. Since it is the in-
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teractions that determine the ground state, both si = −1 and its inverse si = +1 are
ground states.

Under these circumstances we cannot consider the folding transition to be from
si = +1 to si = −1. We can recognize, however, that the essential point of this model is
to consider the impact of the initial conditions. We therefore abandon our insistence
on starting from a state where all of the spins are UP. The system will relax to the de-
sired ground state if the initial conditions are favorable, specifically, if more of the
spins in the initial state are DOWN than are UP.

One way to think about this is to look at the transition in terms of changing sud-
denly the interaction parameters. Indeed, this is a physically meaningful analogy,
since the actual folding of proteins is achieved by changing the interaction energies of
the real system. Fig. 4.5.2 illustrates several different transitions on a phase diagram
of the ferromagnet that includes both the interaction J and the field h. The transition
we have been considering thus far in this chapter is the transition across the first-order
transition boundary shown as (A). In this section we are considering the disorder-to-
order transition that is represented by (B). As long as there are a majority of DOWN
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Figure 4.5.2 Illustration of transitions in a ferromagnetic Ising model that start with differ-
ent initial conditions. The transitions, indicated by arrows, are superimposed on the Ising
model phase diagram. The final state in each case corresponds to having all spins DOWN. (A)
is a first-order transition starting from all spins UP. (B) and (C) both start from a largely ran-
dom arrangement of spins but (B) starts from a majority of DOWN spins. (C) starts from a ma-
jority of UP spins. ❚
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spins in the initial state,there is no need for the process of nucleation and growth to
occur. The relaxation is local, and the system reduces to the decoupled model.

We can generalize the Mattis model to the attractor neural network models dis-
cussed in Chapter 2. In these models, there may be more than one energy minimum.
As with the random spin glass,an arbitrary initial condition leads to any one of these
low-energy states. Therefore, we cannot talk about a unique folded state in equilib-
rium. However, there is a difference in this case. The neural network can be designed
to have only a limited number of low-energy states. Each energy state has a basin of
attraction that consists of all of the states of the system that will naturally fall toward
the low-energy state. The basin of attraction of a particular minimum energy state
consists of initial states that have more than a certain overlap with the minimum en-
ergy state.Within this basin of attraction,the dynamics that updates the spins reaches
the ground state in a finite number of steps. This can be seen to be equivalent to the
time-partitioned decoupled model (Section 4.5.2). The spins that flip in a particular
update correspond to a particular subsystem. The time scale for relaxation is again
O(ln(N);1).

To make use of the neural network model for protein folding, we can choose an
initial conformation that has a finite fraction of spins overlapping with the desired
ground state. There is a lesson to be learned from this model regarding the impor-
tance of the initial conformation in protein folding. Recently there have been sugges-
tions that the initial conformation is not arbitrary, but instead assumes one of a re-
stricted family of conformations that are either partially folded or are related in some
way to the eventual folded conformation. This would be consistent with the concept
of a basin of attraction. The introduction of a limited phase space exploration, where
the protein does not explore all possible conformations but is restricted from the be-
ginning to the basin of attraction of the folded conformation,also brings us to the sec-
ond mechanism for reducing the relaxation time—kinetic effects. We will discuss ki-
netic effects more generally in the next chapter.

The attractor neural network model may also be useful for understanding more
complex protein dynamics than just protein folding. Proteins act as enzymes.
However, their enzymatic efficiency may be influenced by chemical or other influ-
ences that control their function.One mechanism for this control is a change in con-
formation that affects the active enzymatic site. Thus a protein may respond to a va-
riety of controlling influences by changing its conformation. This suggests that there
may be two or more well-defined folded conformations that are each relevant under
particular external conditions. If a change in conformation due to a particular exter-
nal influence is maintained for some time after the external influence is removed,then
a description of the protein in terms of multiple minimum energy conformations
may become useful.

Missing from attractor neural networks is the incorporation of propagative
structures, specifically, interactions that can support driven diffusion or diffusion.
Thus, the equilibration of neural network spin glass systems corresponds to the de-
coupled model and not to any of the models that include driven diffusion or diffu-
sion. The absence of propagative structures is not realistic either for protein folding
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or for the general description of neural networks. Feedforward networks are a simple
approach to incorporating propagation in neural networks. More complex propaga-
tive structures are likely both in proteins and the brain.

Conclusions

In this chapter we have considered a variety of models that display a range of scaling
behavior of the relaxation time with system size. There are diverse individual features
of these models that can be related to properties observed in protein-folding experi-
ments. The models also provide some insight into the nature of the relaxation time
and its relationship to inter-amino-acid interactions. All of these models,however, are
missing the chain structure and its relaxation in space. When a chain is spread out in
space,there is an inherent scaling of the relaxation time with chain length, due to the
travel time of amino acids through the space before they can bond with other amino
acids. In the following chapter we show that this travel time leads to a characteristic
relaxation time that scales approximately as N 2 for an expanded chain.

While the models in this chapter are general enough that they cannot be used di-
rectly as models of the kinetics of protein folding, this investigation does allow us to
relate our findings to other complex systems. There are some general conclusions that
can be made. First, it is not difficult to design models that cannot relax in any rea-
sonable time. Long-range interactions,in particular, lead to exponential scaling of the
relaxation time. A weak driving force for the transition may also cause problems.
There are, however, systematic approaches to interactions that give rise to relaxation
in a time that scales as a low power of the size of the system.One approach is parti-
tioning in space and time; another is diffusion or driven diffusion of boundaries; a
third is predisposing the system by its initial state; a fourth is dominance of local in-
teractions. All of these are likely to occur in protein folding as well as in the dynamics
of other complex systems. It should be apparent that creating a complex system where
interactions cause interdependence and yet allow dynamics to proceed in a reasonable
time requires a careful design. Complex systems have specific properties that are not
generic to physical systems. The issues of how complex systems arise will be discussed
in Chapter 6.
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