z

Protein Folding I1:

Kinetic Pathways

Conceptual Outline

WESWIREI \When kinetics limits the domain of phase space explored by a system, the

scaling of the relaxation time t(N) may be smaller than exponential. Polymers in a lig-
uid can be in an expanded or compact form. The transition between the two—poly-
mer collapse—is a prototype of protein folding. Using simulations, we will explore
possible origins of kinetic limitations in the phase space exploration of long polymers
during collapse.

WESWREI Before we study collapse, we must understand the properties of polymers

in their expanded state in good solvent. Simple arguments can tell us the scaling of
polymer size, R(N) ~ NY. The time scale of relaxation of a polymer from one confor-
mation to another follows either Rouse t(N) ~ N?¥** or Zimmt(N) ~ N * scaling, de-
pending on the assumptions used.

WESRSEBI Polymer simulations can be constructed in various forms. As long as they

respect polymer connectivity and excluded volume, the behavior of long polymers is
correctly reproduced. A two-space model where monomers alternate between
spaces along the chain is a simple and convenient cellular automaton algorithm.

WA BBl During polymer collapse monomers bond and aggregate. Simulations of

472

collapse and scaling arguments suggest that the aggregation occurs primarily at the
ends of the polymer because of the greater flexibility of polymer-end motion. Thus the
aggregates at the end appear to diffuse along the polymer contour accreting
monomers and smaller aggregates until they meet in the middle. This results in an ag-
gregation process that is systematically ordered by the kinetics. The end-dominated
collapse-time scales linearly with polymer length, which is faster than the usual poly-
mer relaxation. The orderly formation of bonds in end-dominated collapse also sug-
gests that kinetics may constrain the possible monomer-monomer bonds that are
formed and thus limit the domain of phase space that is explored in protein folding.
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Phase Space Channels as Kinetic Pathways

In Chapter 4 we introduced the problem of time scale: How can a system composed
out of many elements reach a desired structure in a reasonable amount of time? The
ability of proteins to fold into a well-defined compact structure exemplified this trait.
For our first answer we assumed that the desired structure was the equilibrium state
of the system. We then studied various energy functions that would enable relaxation
to the equilibrium state. All of these energy functions embodied some variation on
the idea of parallel processing. In this chapter we consider the possible influence of ki-
netics on the time scale for reaching a final structure. Considering kinetic pathways as
a mechanism that enables a system to reach a desired structure is a qualitatively dif-
ferent idea from parallel processing. In this approach, a system follows a particular
pathway through the phase space to the final desired structure. The pathway may not
be unique, but it is severely limited compared to the space of possible paths in the
whole space. As a result, there is no reason to expect that the system reaches the ab-
solute minimum energy equilibrium conformation. It does, however, reach a confor-
mation that is low in energy compared to any of the accessible conformations.
Because the system only visits a limited set of conformations along the path from its
initial to final state,our expectation is that the relaxation time—the time to reach the
final conformation—will scale less than exponentially with the size of the system.
There are a number of ways that such kinetic pathways can arise. We will discuss a few
of these in this section and describe a strategy for considering the effect of kinetics in
protein folding.

The simplest form of kinetic pathway can be illustrated using the model of two
independent two-state systems introduced in Section 4.2. Each of the two-state sys-
tems (spins) has two states s; = 1, for i = 1, 2. Relaxation of each spin occurs inde-
pendently from +1 to - 1. Let the relaxation time of the first spin be extremely long
compared to the second spin, T, >>,. If T, is long compared to relevant times (e.g.,
years) then only s, relaxes. The system starts from the state (1,1). It makes a single
transition to the state (1,- 1) and is stuck there. The ground state (- 1,- 1) is never
reached. This,however, is fine if (1,- 1) is the desired state. It actually doesn’t matter
whether (1,-1) or (- 1,- 1) is the ground state. The long relaxation time t, corre-
sponds to a large barrier to the transition of s;. The accessible domain of phase space
includes only states that have s, = 1. More generally, this form of kinetic pathway as-
sumes that there are energy barriers that partition phase space so that some regions
are inaccessible. These regions play no role during the relaxation. For the case of pro-
tein folding, this means that certain conformations would be completely inaccessible
in a transition from the initial unfolded to the final folded conformation.

An example where energy barriers limit the space of conformations during pro-
tein folding is the preservation of primary structure. The bonds between amino acids
along the chain are strong bonds that have a low probability of breaking and reform-
ing. Thus, during folding, the protein does not explore the possible arrangements of
amino acids along the chain and all of their conformations. The breaking of the chain
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is prevented by kinetics, even though there may be other orderings of the amino acids
that have lower energy structures. Breaking the protein chain would enter a different
domain of phase space. It is interesting that there are specific examples where the
chain is broken during protein folding (proteolytic reactions). This is done by en-
zymes that break the amino acid chain in specific places. The subchains that result are
then formed into the final folded protein structure.

The next step is to consider how kinetic pathways might affect the space of con-
formations of a chain with a particular amino acid sequence. Starting from an un-
folded conformation, there do not appear to be any strong bonds or energy barriers
that would prevent it from reaching a large number of compact polymer conforma-
tions. The number of such compact conformations grows exponentially with the size
of the polymer. Thus energy barriers do not appear to be relevant in explaining the
ability of a protein to reach a definite structure. However, the kinetic barriers need not
exist in the initial conformation. It is enough for them to arise during the process it-
self. During protein folding, new bonds form. These bonds might restrict the domain
of space that is explored.A pictorial illustration of the formation of barriers is shown
in Fig. 5.1.1. It shows the emergence of barriers during the kinetic process. These bar-

q\

Figure 5.1.1 The simplest concept of a kinetic pathway is a path bounded by energy barri-
ers that prevent departure from the path and thus prevent an exhaustive search of all con-
formations. In this figure we see that barriers may not exist initially; they may, however, de-
velop as the relaxation proceeds. The illustration should be read as an energy landscape.
Horizontal lines are plots of the energy in the horizontal direction. A vertical bias in the en-
ergy is assumed so that progressively lower lines are lower in energy. The conformation of a
protein is a point in the plane of the page. A possible trajectory is illustrated. From the start-
ing point, it appears that all three of the possible low-energy conformations at the bottom
of the illustration are accessible. However, once the relaxation begins there are barriers that
prevent the conformation from switching from one of the vertical channels to the other. In
order for the correct final state to be chosen, the initial state must be restricted to be close
to the channel that leads to the desired conformation. This conformation may or may not be
the lowest-energy conformation. O
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riers do not prevent the protein from folding into an undesirable structure. However,
the conjunction of a particular initial configuration and the barriers that arise serve
to limit the exploration of space and determine the ultimate conformation.

The picture of strong bonds causing large barriers that form kinetic pathways is
not complete. Kinetic restrictions that limit the domain of phase space that is explored
during folding arise also from entropic bottlenecks. An entropic bottleneck
(Fig.5.1.2(a)) isanarrow channel between one part of phase space and another. Because
the channel is narrow, it is unlikely that the system will move from one part to the
other. Thus a whole region of conformations may not arise. Another way in which en-
tropy can be relevant is illustrated in Fig. 5.1.2(b). In this case, entropy differences in
the inlets to kinetic pathways reduce the sensitivity of the final conformation to the

Figure 5.1.2 Entropy can play more than one role in the properties of kinetic pathways, as
shown in (a) and (b). (a) illustrates an entropy bottleneck that prevents exploration of all
conformations. Two regions of conformations with different energy minima are connected by
a channel that is very narrow; like two valleys connected by a narrow mountain pass. It is un-
likely that the system will go through the channel, because it will rarely be found by random
motion, even if there is no energy barrier in the channel. A different effect of entropy is shown
in (b). A wide inlet to a particular kinetic pathway causes it to be preferentially selected over
a channel with a narrow inlet. This picture explains how kinetic pathways may lead to a pre-
dictable final conformation independent of the initial conformation. Such predictability
would be necessary for kinetic pathways to be relevant to protein folding. O
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initial conformation. Compare this picture with the picture illustrated in Fig. 5.1.1.
For our study of protein folding, Fig. 5.1.2(b) will turn out to be relevant. Certain
bonds are likely to form during the initial stages of folding. These bonds then inhibit
the exploration of all conformations.

Considering energy barriers or entropic bottlenecks to the exploration of phase
space are both part of a thermodynamic approach. They are relevant when diffusion
dominates the kinetics. Diffusion is a random-walk process that occurs when a sys-
tem is coupled to a thermal reservoir (Section 1.4.4 and Section 7.2.3). Diffusion is
not important in a system that is far from equilibrium and not coupled to a thermal
reservoir. The system then follows ballistic motion along a path that is determined by
Newtonian equations of motion. This can give rise to other kinetic effects because a
system follows a specific trajectory rather than an exploration process. Proteins are,
however, embedded in a liquid that serves as a thermal reservoir. The kinetic energy
is dissipated, and stochastic diffusive motion dominates. Thus, for proteins, we are
amply justified in limiting ourselves to consider diffusive motion. More generally, in
order for a stable final conformation to be reached, there must be dissipation of ki-
netic energy. This suggests that diffusion is important, but does not imply that ballis-
tic motion plays no role.

In the previous chapter we adopted a series of models that ignored the spatial
structure of polymers in favor of abstract representations in terms of Ising spin vari-
ables. This approach was helpful in developing an understanding of the issues and
concepts of parallel processing for protein folding. However, in order to address ki-
netic limitations that may select pathways for folding, we must build a model of the
polymer in space and its dynamics.Our objective is to establish the possible existence
of a specific sequence of events in protein folding. Such a sequence of events would
result from a particular order in which amino acids encounter each other. The en-
counters can then result in specific bonds being formed. To determine if a particular
sequence of encounters occurs, we can consider a simplified polymer model that re-
tains its spatial structure but does not represent the details of amino acid structure.
This approach implies that we are interested in the very first part of the folding
process, which might extend no more than a microsecond out of the typically one-
second folding time. The potential impact of this initial time is to set the stage for later
processes by forming bonds that limit the subsequent exploration of conformations,
and by placing the system conformation in the vicinity of its eventual stable state.

In contrast to our studies in Chapter 4 which were essentially analytic, in this
chapter we will focus on simulations (Section 1.7) as a tool for investigating the be-
havior of complex systems. Nevertheless, we begin in Section 5.2 by describing an an-
alytic theory of the kinetics of long polymers. This analytic theory sets the tone for
our investigations. It shows that many of the properties that are of interest do not de-
pend on the specific microscopic structure of the polymer, but rather on the general
behavior of a long chain and its many conformations in space.

To further develop an understanding of polymer kinetics,particularly the kinet-
ics of polymer collapse, we will turn to Monte Carlo simulations. In Section 5.3 we
construct a lattice Monte Carlo model of polymer dynamics. This simple model of
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polymer dynamics is constructed to be in the form of a cellular automaton
(Section 1.5). The model dynamics serves as a simulation tool. Over many steps, the
motion of the model polymer is consistent with the expected behavior of long poly-
mers for relaxation or diffusion. This is ensured by the Monte Carlo method because
only local steps in the space of polymer conformations are taken. In Section 5.4, us-
ing this model for polymer dynamics, we simulate polymer collapse and find evi-
dence for specific kinetic pathways dictated by a preferential ordering of encounters
between parts of the polymer chain. Motivated by the results of the simulations, we
develop an analytic scaling theory that describes the kinetics of the transition of a
polymer from an expanded to a collapsed state. This generalizes and reinforces the
conclusions from the simulations.Finally, we consider a number of variations of the
simulations to test the scaling theory and explore the domain of its applicability to
physical polymers.

Before we proceed, we point out an example of relaxation that does not illustrate
kinetic pathways, even though it appears to. The concept of a kinetic pathway implies
a well-defined sequence of intermediate protein structures between the initial and the
final conformation. However, the converse is not true. The existence of a well-defined
sequence of intermediate protein conformations does not necessarily mean that the
system is kinetically limited to this pathway. Another mechanism that may cause a
well-defined pathway is the inhomogeneous decoupled model discussed in Section
4.5.1. In that model, certain degrees of freedom relax before others. If the degrees of
freedom can be grouped into sets with well-separated relaxation time,then after each
set of degrees of freedom relaxes,a well-defined structure arises. Kinetics does play a
role because of the degrees of freedom that are frozen at any time. However, by the
end of the relaxation, all degrees of freedom can and do relax. This is counter to the
assumption of kinetic pathways.

Polymer Dynamics: Scaling Theory

Polymers are molecules formed out of long chains of atoms that are generally recog-
nizable as a sequence of units (monomers) like amino acids. Biological polymers in-
clude proteins, DNA, and polysaccharides. Artificial polymers include polystyrene
and polyethylene. Polymers whose monomers are all the same are known as ho-
mopolymers. Polymers that have more than one kind of monomer are called het-
eropolymers. Homopolymers are simpler to model, and we will concentrate on de-
scribing their dynamics, though many of the results also apply to heteropolymers.
Polymers are found dissolved in liquids or embedded in composite materials. When
they are dissolved in liquids, there are essentially two possible structures. Either the
polymer collapses into a compact structure or the polymer is expanded. Which of
these occurs depends on whether the effective interaction between monomers is at-
tractive or repulsive. The effective interaction includes both the hard core repulsion
between atoms and the longer-range attraction or repulsion. Entropy favors the ex-
panded polymer structure over the compact structure because of the greater number
of expanded conformations. However, this is generally a weaker effect than that of the
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energy of attraction or repulsion. In a solution with many polymers, compact poly-
mers often aggregate to each other and precipitate. We will focus on the dynamics of
a single polymer, not on polymer-polymer interactions.

When a protein is folded and unfolded in solution,it is crossing the line between
compact and expanded structures. The transition may be driven by changes in tem-
perature. However, the more usual approach is to add a chemical to the solution that
affects the monomer-monomer attraction. What is relevant is the affinity of the
monomers for each other compared to their affinity for the solvent. Because of the
importance of the solvent for the transition,a polymer in its expanded state is said to
be in a good solvent.A compact polymer is said to be in a poor solvent. The transi-
tion is called the g-point. In this section we are concerned with the properties of a
polymer in a good solvent. It is essential to understand the structure and dynamics of
this state before we can study the dynamics of transition from the expanded to the
compact state. We will be concerned with the scaling behavior of the properties of
long polymers as a function of polymer length N. This is similar to Chapter 4 where
we considered the scaling of relaxation with system size.

The scaling of the structure and dynamics of long polymers should not depend
greatly on their chemical composition. The scaling theory of polymers is one of the
great successes of simple concepts in understanding complex systems. A book by de
Gennes, who received the 1991 Nobel Prize in physics, contains many of the elegant
arguments that describe polymers simply and successfully.

A long polymer in a liquid has a local structure that is more or less flexible. The
bonding of adjacent monomers controls the local polymer structure. For a specific
pair of monomers,there may be several possible bonding configurations or there may
be only one allowed configuration. However, a long enough polymer is always flexi-
ble,so we can start by considering it to be a random walk in space with N steps. When
a polymer is modeled as a random walk,the size of a step is understood to depend on
the polymer flexibility, with stiff polymers having many monomers per step and flex-
ible polymers having few monomers per step. For convenience, we can redefine our
monomers so that each step is between the new effective monomers.

Polymers are generally found in three-dimensional space. However, we general-
ize our discussion to d-dimensions. In d-dimensions a random walk is performed in-
dependently in each dimension. The average distance traveled along the polymer
from one end to the other is called the polymer end-to-end distance R,. We use o to
represent the root mean square distance traveled in a random walk in a single di-
mension. The random walk in one dimension satisfies (Section 1.2):

o =y<(x - %)’ >:J<(é- (Xis1- %)) > :Jé <(Xs1- %)°>=4Na

(5.2.1)

where xy and x, are the x coordinates of the last and first monomers respectively.
More generally, x; is the x coordinate of the i th monomer. The third equality follows
from the independence of the steps. a is the distance of an elementary step in one di-



Polymer dynamics: Scaling theory 479

mension—the average distance between coordinates of adjacent monomers. Since the
random walk in each dimension is independent,the end-to-end polymer length, Ry,
is given by a similar expression:

RO:J<(rN ) r1)2> :J<(é (o I’i))2>:Jé. <(fy- I’i)2 >=ydNa

(5.2.2)

where r; is the d-dimensional vector position of monomer i. The result follows from
the existence of dN independent terms in the sum. It could also be written as R =
(Na¢ where a¢= (fa is the monomer-monomer distance.

A polymer is a thermodynamic system whose equilibrium size is determined by
its free energy. When we consider the polymer as a random walk, we assume that all
of the possible configurations have the same energy. The size is then determined by
the entropic part of the free energy. As discussed in Section 1.4, the probability of a
particular end-to-end polymer distance R can be found using the relationship:

P(R, N) —¢ F(R,N )/kT/Z = (E(R,N)- TS(R, N))/kT/Z - eS(R, N)/k/z (523)

F(R,N) isthe free energy, E(R,N) and S(R, N) are the energy and entropy respectively,
and Z is a normalization constant. The final expression only applies when the energy
can be neglected. We have already essentially calculated the probability P(R,N) when
we counted the number of random walks of a particular length in Section 1.2. From
Eq. (1.2.39), the probability distribution for the distance traveled in a one-
dimensional random walk is a Gaussian. In d-dimensions we take a product of the
Gaussian probability in each dimension to obtain the probability for a particular end-
to-end vector R:

P(RN)= 1 -R? R0 _ 1 o~ OR7/2RS

CI/Ze d/’2
(2r0) (2nRo/d?)

(5.2.4)

where R is the magnitude of R. To obtain the probability of a particular end-to-end
distance, R, this must be multiplied by the d - 1 dimensional surface area of a sphere.
It turns out that none of this detail is important for what follows; however, for com-

pleteness we can write the surface area as a constant =%~ * times R~ 2.

d-1d-1
E R AR 2R?

P(RN) =————3r3¢ 525
(2nRo/dl/2) (5.2.5)

From Eq. (5.2.3), the free energy of a particular end-to-end distance is given by
the logarithm of the probability of a particular length times the normalization
constant Z:

2
Facom-var (R N) = - KTIn(ZP(R N)) = Ry + d;i,g (5.26)




480 Protein Folding 11

where we have neglected the logarithmic terms in Rand N. Since only free-energy dif-
ferences matter, the constant F, could also be neglected.

There is something unusual about this expression for the free energy. The free en-
ergy minimum does not occur at the end-to-end distance R, that was found before.
It occurs instead at R = 0. Part of this problem arises because we neglected the loga-
rithmic term (d - 1)InR. However, even when we indude this term,the minimum oc-
curs at {(d - 1)/d)R, rather than R,. This system does not satisfy the usual property
of a macroscopic system, that the probability distribution becomes sharp as the sys-
tem becomes large. In the usual case we can identify the expected value of a system
property as the value that maximizes the free energy. For the rand om walk, the free
energy has the more general interpretation,discussed in Section 1.4,as the logarithm
of the probability. If we were to use the free energy to evaluate the value of the aver-
age radius, we would still have to calculate the average over the probability distribu-
tion. After calculating the average we would recover the value R,. This discussion
shows the connection between the entropy, free energy and the characteristic size of
a polymer. When we need to add additional terms to the free energy, such as the
monomer-monomer interactions, we can recalculate the polymer size using the same
expressions.

Our discussion of the random walk in Section 1.2 included a proof of the central
limit theorem that allows us with some confidence to consider various random walks
to have a Gaussian probability distribution. However, the polymer differs in an es-
sential way from the random walks that were discussed there. The difference is that
the steps are not uncorrelated. The stiffness of a polymer would tend to make a poly-
mer continue in the same direction. More generally, the bonding and interactions be-
tween monomers near each other along the contour cause constraints between neigh-
boring steps. This turns out not to be an essential problem, because the coupling
between steps along a polymer decays exponentially. There is a characteristic distance
along the chain after which the constraints become negligible. This means we can
choose to label our polymer with random steps as long as the steps are larger than the
correlation distance (persistence length). The number of these steps becomes our ef-
fective monomer number N. When we have many of them, then, and only then,can
we consider the polymer to be long. Proteins in their expanded form turn out to be
quite flexible and so the correlation length is short,approximately a single amino acid.
On the other hand, DNA is quite stiff. For a single strand of DNA the persistence
length is roughly 200 to 400 monomers. For a double strand helix, the persistence
length is approximately 2,000 monomers (base pairs).

We are, however, still missing an important aspect of the interaction between
monomers. This is the contact interaction between any two monomers that en-
counter each other. We have argued that we do not need to consider the interactions
of monomers near to each other along the chain, because the correlations disappear
for long enough polymers. However, the interactions that occur between any two
monomers still must be considered. Since the monomers are repelling each other
when the polymer is in a good solvent, we can represent the interaction between them
as an excluded volume—a volume around each monomer that other monomers can-



Polymer dynamics: Scaling theory 481

not enter. In Section 1.10 we discussed the use of renormalization theory to under-
stand the relevance of parameters in the macroscopic limit. It is possible to show that
for isolated polymers in good solvent,the only relevant parameters in the long length
limit are the length of the polymer and the excluded volume. This simplifies our con-
siderations and guarantees that our results apply to any polymer, if it is long enough.
Our task is to identify the properties of a polymer that has an excluded volume. Such
abstract polymers are called self-avoiding random walks. Self avoiding walks should
be larger than random walks because of the repulsive interactions between the
monomers.

There is a scaling argument for the size of a self-avoiding random walk con-
structed by Flory. The argument is based on the competition between the repulsive
energy of the excluded volume that tries to expand the polymer, and the tension due
to entropy reduction when the polymer chain is stretched. Assume that we have a
polymer that occupies a volume RY. The density of the monomers in this volume is
given by:

N
RY

c= (5.2.7)
In this expression, and throughout, we avoid numerical coefficients,since the objec-
tive is only to understand the scaling. The energy of the monomer-monomer interac-
tions is given by the probability that two monomers encounter each other. On aver-
age, an encounter costs an amount of energy characteristic of the thermal kinetic
energy of the monomers, kKT. Once two monomers approach each other close enough
to cost this amount of energy, they cannot approach any closer. If we neglect the struc-
ture of the polymer, then we can calculate the probability of an encounter. We think
of the monomers as distributed with uniform probability in the volume RY. We imag-
ine placing each of the monomers at random in this volume. Each monomer has an
excluded volume V. The number of monomer-monomer overlaps (interactions) is
then proportional to the square of the concentration. More specifically, it is given by
the number of monomers times the fraction of the volume occupied by monomers.
The energy associated with the excluded volume is thus:

NV N?
Fexcluded - volume (R'N) =KTN ? =KTV F (5.2.8)

where KT gives the units of energy. The neglect of the polymer structure is a neglect
of correlations between monomer positions. This is characteristic of a mean field ap-
proach (see Section 1.6). Thus this equation is a kind of mean field treatment of
monomer interactions.

The excluded volume energy in Eq.(5.2.8) is smaller for larger R. To this energy
we add the free energy for the random walk, Eq. (5.2.6), that neglected the excluded
volume. We obtain the free-energy expression:

dkTR? N2
F(RN)=F KTV — 5.2.9
(RN)=F + R KTV =5 (5.2.9)
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We minimize this expression to obtain the typical size of the polymer. We can do this
as long as the result is not zero. Neglecting all coefficients we obtain:

Ry, N2
ey 2.1
Rg Rg+l (5 0)

From Eq. (5.2.2) we have R2 1 N, so:

Ry~NY (5.2.11)
where the exponent v is given by the expression
3
= (5.2.12)
Vo2

The tilde, ~, is used to indicate that the result only holds in the asymptotic regime,i.e.,
for long enough polymers. The result we have obtained is remarkable. It is exact in
one dimension where v =1, because the excluded volume walk is a straight line. It has
been shown to be exact in two dimensions where v =0.75. In three dimensions, where
v =0.6,it is in reasonable agreement with both experiment and numerical simulation.
In four dimensions, it gives the random walk result v = 0.5. In higher than four di-
mensions,this must continue to be the result,since it indicates that the excluded vol-
ume is irrelevant. This has also been proven to be correct. The reason that the random
walk becomes correct in four or higher dimensions is that the free energy due to
monomer-monomer interactions for a random walk decreases with the length of the
chain (see Question 5.2.1). Thus this simple mean field scaling argument appears to
give the exact result in all dimensions. Why does the mean field approach give an ex-
actresult in all dimensions? Unlike the mean field treatment of the Ising model, which
was exact only in four or higher dimensions,the mean field treatment of polymers ap-
pears to benefit from a cancellation of errors.

The alert reader may note that we actually made what might seem an unreason-
able step in combining the free-energy expressions in Eq.(5.2.6) and Eq.(5.2.8) to ob-
tain Eq.(5.2.9). The definition of R used to obtain Eq.(5.2.6) was the end-to-end dis-
tance of the polymer. The definition of R used to derive the form of the excluded
volume energy in Eq. (5.2.8) was the characteristic spatial size of the polymer. In ef-
fect, we assumed that all characteristic linear dimensions of the polymer behave in the
same way. This is a simplification that is a reasonable first assumption to be made in
constructing a scaling theory.

uestion 5.2.1 Show in more than four dimensions that the monomer-

monomer interactions have decreasing importance and are therefore ir-
relevant in the long polymer limit. However, for fewer than four dimensions
they are not irrelevant.

Solution 5.2.1 In order to see whether the excluded volume is relevant, we
evaluate its effect on the polymer free energy. We do so assuming the poly-
mer has a volume given by the random walk without excluded volume. This
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is the maximum effect the excluded volume can have. Using the value of the
polymer end-to-end distance for a random walk,the excluded volume term
in the free energy scales as:

NZ
Fexcluded- volume =KTV R—d pN s (5.2.13)
0

The random-walk term in the free energy is independent of polymer length.
Thus for any dimension greater than four, the excluded volume interaction
has decreasing relative importance with length of the polymer and will not
significantly affect the asymptotic behavior of the polymer size. For fewer
than four dimensions,the excluded volume term in the free energy increases
with the size of the polymer and therefore is relevant. 0

The dynamics of an isolated polymer consists of diffusion of the whole polymer
and internal relaxation of its conformation. Diffusion describes the motion of the
polymer center of mass. The internal relaxation of a polymer describes how the poly-
mer changes from one conformation to another. We think of this as a relaxation
process because if we know the conformation of a polymer at one time,then the en-
semble of this polymer consists of many replicas of the same conformation. However,
the random motions of the liquid will cause the ensemble over time to forget the ini-
tial conformation and become indistinguishable from an ensemble that started from
any other conformation. This is the equilibrium ensemble. The process of relaxation
to the equilibrium ensemble resembles the exponential relaxation in a two-state sys-
tem in Section 1.4. The characteristic relaxation time t(N) depends on the length of
the polymer. Our objective is to determine the scaling of the relaxation time with
polymer length. Dynamic scaling is generally more difficult and less universal than
scaling of static quantities like the size of a polymer. Of particular significance when
we consider the dynamics of polymers is our treatment of the fluid. This was not rel-
evant when we considered the static structure of the polymer.

There are two established estimates for the scaling of the relaxation time with
polymer lengtht(N). The Rouse relaxation time describes the dynamics of a polymer
assuming that the motion of a monomer is not correlated to the motion of monomers
that are far away along the polymer chain. However, the motion of the fluid, described
by hydrodynamics, couples the motion of one monomer to another when they are
near each other, no matter how far apart they are along the chain. When a monomer
moves, it causes a flow of fluid that in turn moves other monomers. Also, a flow of
fluid that moves one monomer has a spatial extent that can move other monomers at
the same time. This coupling is taken into consideration in the Zimm relaxation time.
We discuss first the Rouse and then the Zimm relaxation.

The dynamics of a polymer becomes slower as the polymer length increases. The
relaxation time,therefore,is controlled by the dynamics of the longest length scale—
the movement of half of the polymer from one place to another. We first illustrate this
using a simple elastic string model. Using this model, we derive the Rouse relaxation
for a random walk that neglects the excluded volume. In the elastic string model, we
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assume that the distance between adjacent monomers has the same distribution as the
end-to-end distance of a polymer. This means that the Gaussian distribution applies
already to the intermonomer separation. We can assume this for a very long polymer
because we can always relabel our monomers to be farther apart along the chain. For
example, we can label every tenth or every hundredth monomer as a new “monomer.”
We call the chain between the new monomers “the bond” between them. Since this
only changes the number of monomers by a constant factor, it will not change the
scaling of properties of the polymer. However, by relabeling the monomers,the bond
between two of our new monomers itself acts like a long polymer. The relabeling idea
only works when we neglect excluded volume.

The free energy of the elastic string depends on the intermonomer separation as
given in Eq.(5.2.6). This is the equation for a spring where the energy is proportional
to the square of the distance. The force between two adjacent monomers is then pro-
portional to the distance between them. We can write the total force on the ith
monomer as:

dr
KI(riv2- 1) +(61- 1)]» KF (52.14)

where K is the spring constant. On the right we have taken a continuum limit with i
the position along the contour of the polymer. We assume that the motion of a
monomer in the fluid is overdamped, which means that the velocity of a monomer is
proportional to the force upon it. Multiplying the force times the mobility of a
monomer u gives the velocity:

dr d’r

The solution of this equation is given by exponential relaxation of spatial waves:
r; (t) » Acos(ki)e’ '™ + Bsin(ki)e” '™ (5.2.16)

where k =25t/ is the wave vector of the oscillation of the elastic string. The bound-
ary conditions at the ends restrict the wavelength A to be no greater than the string
length N. By inserting the solution into the differential equation we see that the re-
laxation time for a particular wavelength is given by

T = M2/ uK (2m)? (5.2.17)

Neglecting all the numerical coefficients gives us the longest relaxation time
(MU N)as:

t(N) ~N? (5.2.18)
This is the Rouse relaxation time when excluded volume is neglected. It applies much
more generally than its derivation for the elastic string model would indicate. The main

reason for this generality is that the longest relaxation time involves motion of essentially
the whole polymer, and therefore does not depend on the local polymer properties.
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We take a different approach in order to incorporate the excluded volume and the
effect of hydrodynamics in the scaling of the relaxation time. This approach relates
polymer relaxation to the polymer diffusion constant. Relaxation of a polymer occurs
when a significant part of the polymer (say half) is able to diffuse in a random walk
across the whole volume occupied by the polymer. This means that we may write the
relaxation time using a random-walk expression by assuming the distance traveled is
the diameter of the polymer:

R(N)?~D(N)t(N) (5.2.19)

This is the usual relationship of distance traveled to the diffusion constant and the
time (e.g., Eq. (1.4.56)). We have used the diffusion constant of the whole polymer
D(N) rather than D(N/2) because their scaling dependence on N is the same. R(N)
is a characteristic length, such as the diameter or radius of the polymer.

Since we already know the size scaling of the polymer, we must derive an expres-
sion for the diffusion constant of a polymer. The diffusion of the polymer is given by
the displacement of the center of mass of the polymer. In an interval of time Dt, the
center of mass of the polymer r,, changes according to:

1
Dr,, =D <r; >= Wé Dr, (5.2.20)

Assuming a mean field treatment, we neglect monomer-monomer correlations.
Accordingly, the movement of each monomer is uncorrelated to other monomers.
Each term in the sum Dr; is an independent random number. The sum in Eq.(5.2.20)
is like a random walk with N steps. Thus the sum over all the independent displace-
ments of the monomers is proportional to N*/2. The center of mass displacement is
given by:

Dry, ~ N2 (5.2.21)

The scaling of the diffusion constant is obtained by setting this distance to be the re-
sult of a random walk of the center of mass:

D =Dry,2/Dt~N"* (5.2.22)

where D, the time for monomers to take the steps Dr;, is independent of the polymer
length.

Using this diffusion constant, we obtain the relaxation time from Eq.(5.2.19) as
the time for diffusion of the polymer across its own radius:

©(N) =R(N)?)/D(N) ~ N?¥** (5.2.23)

This is the generalization of Rouse dynamics to self-avoiding random walks. For two
dimensions (three dimensions), it gives an exponent of 2.5 (2.2). Without excluded
volume, v =1/2, it reduces to the previous result.

In order to describe the relaxation of a polymer including hydrodynamics of the
solvent, we start from the Navier-Stokes equation. We will not need to solve this
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equation;however, we do need to know what parameters are involved in order to con-
struct a scaling argument. The standard complete set of hydrodynamic equations

N 4 (vxRv=-K g2
- +(vxNv=-NP/p+ . N°v (5.2.20)
N ¥=0
describe the macroscopic behavior of the motion of an incompressible fluid. In these
equations v is the velocity of the fluid, P is the local pressure, p is the density which is
essentially constant in an incompressible fluid, and v is the viscosity. We do not de-
rive these equations here, but we review the origin of each term. The top equation
(Navier-Stokes equation), is Newton’s law dv/dt = F/m applied at a particular loca-
tion in the fluid. The left side of the equation is the acceleration of a fluid element.
The second term accounts for the displacement of the accelerated fluid element. The
right side of the equation is the force divided by the mass. This has two parts,the force
due to the pressure gradient and the force due to the effects of shear. The second equa-
tion is the absence of a divergence of velocity (outflow of matter from a point) in an
incompressible fluid. There are four equations,the three components of the top equa-
tion and the bottom equation,and four unknowns,the three components of the ve-

locity and the pressure (divided by the density) (v,P/p).

The underlying assumption of our treatment of a polymer in a hydrodynamic
fluid is that the polymer moves with the fluid in which it is located. Thus we think
about the motion of the polymer as the motion of a spherical volume R® of the fluid.
Like the other mean field treatment, this approximation neglects the effects of
monomer-monomer bonding on polymer motion. In order to obtain the diffusion
constant of the polymer, we need to know which parameters it may depend on. A scal-
ing argument follows from dimensional constraints. We imagine the diffusion of a
spherical volume of fluid. At any instant,the velocity and pressure fields are solutions
of the Navier-Stokes equations. There is one piece of information not contained in the
Navier-Stokes equation—the size of the random thermal motion of the sphere of
fluid. This is given by the thermodynamic expression for the average velocity of a par-
ticle at temperature T (Eq. (1.3.83)):

<v?*>p kT/m=kT/pR? (5.2.25)

The expression used for the mass of the fluid, m = pR®, neglects the small mass of the
polymer distributed within it. In addition to the characteristic velocity, there are only two
other parameters that are relevant to the motion. One is the size, R, of the fluid volume
that is moving. The other is the viscosity, 1, which characterizes the fluid. The viscosity
only appears in the Navier-Stokes equation in combination with the density asm/p.
The diffusion constant must be a function of only three parameters; (< v* >,
R,n/p). The diffusion constant is related to the thermal velocity by the relationship:

Du<v>t¢ (5.2.26)

This relationship is derived later in Section 7.2.3. The time T ¢is not the relaxation
time of the polymer. It is the characteristic time between changes in velocity of the
sphere of fluid. In effect,it is the time between collisions of the sphere with the rest of



Polymer dynamics: Scaling theory 487

the fluid. This time depends only on the remaining two parameters (R,n/p). By look-
ing at Eq. (5.2.24) the dimensions of n/p can be seen to be length?/time. The only
combination of n/p and R that has the dimensions of time is R?p/v, which must
therefore be proportional to T ¢ Inserting this into Eq. (5.2.26) we have:

KTR?p kT
Du<v’>Rpmp —==—— 5.2.27
H pmu R ( )

Thisiscalled Stokes’ law. To concretize this result we give the diffusion constant of asphere
in three dimensions, which can be obtained by solving the Navier-Stokes equation:

KT 1
6ml_R M R (5.2.28)

Eq.(5.2.28) is in agreement with Eq.(5.2.27) in three dimensions,and it provides the
numerical prefactor for the specific case of a sphere.

There is a problem with the result of Eq. (5.2.27) for two-dimensional sys-
tems. There are two aspects to this problem. The first issue is the result itself. In
two dimensions, according to Eq. (5.2.27), there is no dependence of the diffu-
sion constant on the size, R, of the system. It turns out that a more careful treat-
ment yields a logarithmic correction, which is nonanalytic. The second issue is
the nature of the two-dimensional system that is being modeled. Any two-dimen-
sional system that we encounter is embedded into a three-dimensional universe.
A two-dimensional Navier-Stokes equation assumes one of two scenarios. The
first scenario is that we have a system formed out of very long cylinders. For a
polymer this would correspond to having monomers that are very extended in
one dimension. The direction in which the monomers are extended is perpen-
dicular to the direction in which the monomers are bonded to each other. It is
also perpendicular to the two dimensions in which the monomers can move.
Alternatively, the two-dimensional equation would correspond to having a poly-
mer in a solvent between two solid plates whose separation is no greater than the
width of a monomer. These plates allow the polymer to diffuse without sticking.
Neither of these scenarios are easy to construct. It is more relevant to consider a
two-dimensional problem where a polymer is trapped at an interface. The inter-
face might be a boundary between two liquids. In this case the polymer occupies
a space like that of a flat disk in the two-dimensional interface. The Navier-Stokes
equation we would solve to describe the motion of the disk is a three-dimen-
sional equation. Even though the polymer only moves in two dimensions, the dif-
fusion constant scales the same as in three dimensions.

In order to see this we must embellish our scaling argument slightly. R would play
the role of an overall scale factor of the disk shape. The radius would be given by R,
and the height of the disk would be given by TR, where T is a small dimensionless
number. All of the scaling stattments would hold as before for three dimensions lead-
ing to Eq.(5.2.27) for d =3. We are not yet done, because we assumed that the height
of the disk changes with the radius, which is not true for a polymer at an interface.
However, for a thin disk,the interaction between the fluid and the disk only occurs at
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the faces of the disk. The height is irrelevant, and we can use the same scaling for a
disk whose height does not change. Thus, as in Eq. (5.2.27), the scaling of the diffu-
sion constant is inversely proportional to the disk radius (polymer radius), D p 1/R,
in the two-dimensional space. Later when we want to show a simulation of two-
dimensional polymer collapse, we will choose this scaling dependence both because
of its similarity to the properties of three-dimensional collapse and because it is a
model of the dynamics of a polymer at an interface.

The diffusion constant of a polymer is given by either Eq.(5.2.27) or Eq.(5.2.28)
with the radius given by Eq.(5.2.11). Inserting Eq.(5.2.27) into Eq.(5.2.19) gives the
Zimm relaxation time:

t~RI~N? (5.2.29)

or for our modified scaling using Eq. (5.2.28) in both two dimensions and three
dimensions:

t~R¥P~N¥ (5.2.30)

The Zimm relaxation scaling in three dimensions is 3v = 1.8, which is smaller than
the Rouse relaxation result 2.2. In two dimensions it is either 2v = 1.5 according to
Eq. (5.2.29), or 3v = 2.25 according to Eq. (5.2.30). For much of our discussion
the differences between the various relaxation-time scaling exponents will not be
significant.

This concludes our study of the structure and dynamics of polymers in good sol-
vent. The next step is to introduce techniques for the simulation of polymers that en-
able us to investigate the properties of polymer collapse. We will return to scaling ar-
guments for the same problem in Section 5.4.3.

Polymer Dynamics: Simulations

5.3.1 Introduction to simulations of polymer dynamics

In this section we describe several methods for simulating polymers that are both cel-
lular automata (Section 1.5) and Monte Carlo algorithms (Section 1.7). They also il-
lustrate the technique of space partitioning that can be used generally for parallel pro-
cessing of spatially distributed systems. From a theoretical point of view, one of the
most interesting features of these algorithms is that they allow Monte Carlo simula-
tions of extended objects but are inherently parallel. With the advent of massively par-
allel computers,including cellular automaton machines,inherent parallelism can also
be a practical advantage. The algorithms are also quite simple and they illustrate how
a simple cellular automaton algorithm can be designed. Simplicity often makes it eas-
ier to work with and reason about models.A simple algorithm leads to small,fast pro-
grams,and small programs are easier to write, debug, optimize, execute,maintain and
modify. One of the algorithms,the two-space algorithm,is particularly convenientand
efficient and will form the basis of our simulations of polymer collapse in Section 5.4.

In general, polymer simulations,like other simulations,use either molecular dy-
namics or Monte Carlo dynamics (Section 1.7). Molecular dynamics simulations are
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suggestive of Newtonian dynamics and are implemented by moving all atoms with
small steps (no more than 10°2 of a characteristic interatomic distance) according to
forces calculated from modeled interatomic forces. Monte Carlo simulations repre-
sent the dynamics of an ensemble of polymers by steps that take into account transi-
tion probabilities required by thermodynamics. Both of these simulation methodolo-
gies give the same results for equilibrium ensemble properties like the polymer
end-to-end distance or other average structural properties. They also give the same
results for dynamical properties that involve motions on a scale that is large compared
to a step of an individual monomer. Large-scale motions include polymer conforma-
tional change, relaxation and diffusion. All atoms can be moved in parallel (at the
same time) in molecular dynamics, which therefore appears to be ideally suited for
parallel processing. However, with a processor attached to each atom, calculation of
the forces requires a large number of communications between processors.Each atom
must communicate to every other atom its position. Connections between processors
are the limiting feature of parallel computers. Monte Carlo simulations have a funda-
mental advantage in that movements of monomers can be much larger and there is
no need to specify forces. It is sufficient to specify the energy for a simple model poly-
mer system. Monte Carlo simulations also can take into consideration the thermal
reservoir effect of the fluid without simulating the fluid itself. Hydrodynamics, how-
ever, is not included. We will focus on the Monte Carlo method, describe why the
straightforward approach to parallelization does not work,and then construct a par-
allel cellular automaton algorithm that does.

In Monte Carlo simulations of polymers, a long chain of monomers is repre-
sented by the coordinates of each monomer. There are many different methods for de-
scribing the monomer-monomer interactions,the local structure of the polymer and
the process of each move. Just as for real polymers,the local polymer structure should
not affect the characteristic properties of long polymers, such as the scaling of the size,
R(N), or relaxation time, T(N).

An example,illustrated in Fig. 5.3.1,is the ball-and-string model. The monomers
are rigid balls of radius ry that are attached to nearest-neighbor monomers by strings
of length d, that have no elasticity. The rigid balls are not allowed to overlap—the en-
ergy is infinite if they do. The strings are not allowed to break and simply prevent ad-
jacent monomers from separating further than a distance d, apart. Smaller distances
down tody - 2ryare possible. To construct a Monte Carlo dynamics for this model we
must specify the nature of a move (the matrix A in Eq. (1.7.19)). The easiest specifi-
cation is to allow one monomer at a time to move anywhere within a distance r,,, from
its current location. Then a single step of the Monte Carlo consists of two parts: (1)
selecting a move,and (2) accepting or rejecting the move. Selecting a move consists of
selecting at random one of the monomers,and selecting a direction and a distance to
move the monomer with equal probability within the ball of radius r,, around its
original location. The process of accepting or rejecting the move is explained as fol-
lows. There are two possibilities, either the final conformation is allowed or it is not
allowed. It is allowed if two conditions are satisfied: there is no overlap of the
monomer we chose with any other monomer, and the move did not take the
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Figure 5.3.1 Illlustration of an abstract polymer composed of monomers that are connected
to neighbors and do not overlap “excluded” volumes. This is called the ball-and-string model.
The motion of monomers is restricted so that they do not separate further than the string
length, dy, from monomers they are bonded to. Monomers have a ball radius r, and any two
are prevented from overlapping. The strings act only as limits to the separation between
monomers, and have no other physical existence. In order to ensure that the polymer cannot
cross through itself, d, should be less than 2C2r,. As illustrated on the lower left, for a larger
d, the polymer crosses through itself when two bonded monomers at opposite corners of the
square move up out of the page and the other two bonded monomers move down into the
page. In two dimensions it is enough that dy < 4r,, preventing a monomer from passing be-
tween two other monomers.

This model polymer can be conveniently simulated using Monte Carlo displacements of
individual monomers. A monomer is moved (lower right) to a randomly selected position
within a radius r,, around its original position, but only if it does not then violate the struc-
tural constraints. Unlike molecular dynamics simulations, however, there are problems in mov-

ing monomers in parallel. Moving two bonded monomers might break their bond, and moving
any two monomers at the same time can lead to inadvertent overlap. O

monomer further than d, away from the neighbors to which it is attached by strings.
Itis not allowed if either of these conditions is violated. For any monomer move that
is allowed,the energy of the polymer is unchanged. For any move that is not allowed,
the energy increases to infinity. Because the energy change is either zero or infinite,
the temperature of the simulation does not matter. Allowed moves are accepted,
moves that are not allowed are rejected.

We construct below several different ways of simulating long polymers. In all of
them a simulation step consists of selecting a monomer, monomer i, from the poly-
mer chain and performing a move subject to the following constraints:
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1. The move does not “break” the polymer connectivity—monomer i does not dis-
sociate itself from its nearest neighbors along the chain.

2. The move does not violate excluded volume—monomer i does not overlap the
volume of any other monomer j.

These two constraints, connectivity and excluded volume,are sufficient to guarantee
that the structural properties of a long polymer will be found.

In order to study the dynamics of a polymer, we must also guarantee that the
steps taken are local steps in the space of polymer conformations. This is generally sat-
isfied when monomer steps themselves are local. However, we must also be sure that
the polymer cannot cross through itself. For the ball-and-string model,this limits the
size of dq (see Fig. 5.3.1). For the types of models we will use,it is easy to verify that a
polymer cannot pass through itself.

In naive parallel processing, a set of processors would be assigned one-to-one to
perform the movement of a set of the monomers.A processor does not know the out-
come of the movement of the other monomers; it can only know their position be-
fore the current step. With the two constraints (1) and (2) it would be impossible to
perform parallel processing in this way, since moving different monomers at the same
time is likely to lead to dissociation or overlap. Dissociation only restricts the parallel
motion of nearest neighbors. However, the excluded volume constraint restricts the
parallel motion of any two monomers, presenting a fundamental difficulty for paral-
lel processing.

5.3.2 Cellular automata for polymer simulations

The idea of a cellular automaton is to think about simulating the space rather than the
objects that are in it. This is useful for parallel simulation of polymers because,as long
as there are no long-range interactions, the motion of monomers that are far apart
must be independent of each other. Thus we can assign parallel processors to sepa-
rated regions of space. When this concept is applied to a continuous space, we call the
methodology space partitioning.

Space partitioning could be applied to the ball-and-string model. As shown in
Fig. 5.3.2, the space would be partitioned into regions. For Monte Carlo simulations
of the ball-and-string model, we could move at the same time monomers selected from
regions separated by more than adistance of 2r,, + 2r,. At this distance,two monomers
moving toward each other at the same time would not enter each other’s excluded vol-
ume. This approach can work for other polymer models as well. However, it is sim-
plest to implement and simulate for a cellular space of binary variables where the pres-
ence or absence of a monomer is indicated by a cell being oN or oFF.

To construct a polymer in a cellular space we could make a polymer model very
similar to the ball-and-string model. Instead of a continuum of positions, the loca-
tions of monomers would be specified on a lattice. There is an algorithm, the bond-
fluctuation algorithm,that implements such a ball-and-string model. However, in the
design of a cellular automaton there is an additional feature to keep in mind. We
would like to know which monomers are attached to each other solely by their relative
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Figure 5.3.2 For the
ball-and-string model of
Fig. 5.3.1, or other poly-
mer models without
long range interactions,
monomers  sufficiently
far apart may be moved
independently and in
parallel. The figure illus-
trates the use of space
partitioning. If one
monomer is selected
from each shaded re-
gion, the selected
monomers can be moved
at the same time with-
out chance of overlap.
The location of the
shaded regions should
then be shifted so that
all monomers can be —
moved. O (Fg+ry)

location in space. This is unlike the ball-and-string model where neighbors attached
by strings can be farther apart from each other (up to a distance of d;) than two
monomers not attached by strings. All monomers, bonded or not bonded, can ap-
proach each other to a smaller distance of 2r,. Because of this, we have to keep track
of which monomers are bonded to which monomers by labeling the monomers. For
a single polymer, the label might be the monomer se quence number along the poly-
mer, which would tell us which monomers are neighbors along the chain and which
are not. This labeling would not be convenient in a cellular automaton. The idea of a
cellular automaton is that the dynamics only depends on the local spatial conforma-
tion. Bonds should be specified only by the relative position of the monomers. Thus
we think about a bonded neighbor as a monomer that is closer than a certain distance,
and any other monomer has to be farther away. We call the space around a monomer
in which its bonded neighbors are located the bonding neighborhood. We note that,
since monomers that are not bonded cannot be closer to each other than bonded
monomers, in any such model, the polymer chain cannot pass through itself.

A polymer model that implements this in two dimensions is shown in Fig. 5.3.3.
In this model,monomers are bonded ifthey are adjacent either horizontally, vertically
or diagonally. The bonding neighborhood isa 3 “ 3 region around a monomer. In
three dimensions, we could use a3~ 3~ 3 cube as a bonding neighborhood. Any
monomer except those that are bonded must be excluded from occupying any of these
sites. We can think about this as an excluded volume that is larger than a single cell,as
illustrated in Fig. 5.3.4. This excluded volume applies to all monomers, except the
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Figure 5.3.3 lllustra-

tion of a cellular (lattice) Q
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Figure 5.3.4 (a) shows the size of the effective excluded volume for the model of Fig. 5.3.3.
The excluded volume is larger than a single cell. It only applies to nonbonded neighbors and
prevents them from approaching the adjacent lattice sites. Note that the excluded volume il-
lustrated does not apply to bonded neighbors which have only a one-cell excluded volume
with respect to each other. (b) shows the possible moves of a monomer selected for a Monte
Carlo update. There is nothing special about this choice of possible moves. We could allow
diagonal moves, but the choice of possible moves must be made once and for all for a
simulation. O

bonded neighbors. Bonded neighbors are prevented from occupying the same site,
but can be adjacent. As with other variations of local polymer structure,this is not im-
portant for the structure of long polymers. If anything, this is a more realistic model
for the bonding of real polymers. Bonds in real polymers are also specified by relative
location of monomers—not by a labeling scheme.

The cellular space model in Fig. 5.3.3 could be simulated just like other Monte
Carlo models by choosing a monomer, choosing one of the compass directions
NSEW, and moving the monomer if the move does not violate either connectivity or
excluded volume constraints. We can,however, turn it into a cellular automaton using
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the Margolus dynamics approach of updating plaquettes (see Section 1.5.6). This is
necessary because we need to conserve various quantities in this dynamics: the exis-
tence of the monomers and their bonding and excluded volume constraints.
Updating plaquettes enables the implementation of conservation laws and con-
straints in a natural way. A Margolus dynamics for this model uses a partition of the
space into plaquettes thatare 3~ 3 regions with an additional one-cell buffer between
plaquettes (Fig. 5.3.5). This enables us to move monomers around in each of the pla-
quettes independently of other plaquettes in the space. The easiest way to do this is to
move only monomers at the central sites of the plaquettes. Choosing a direction for
each monomer at a central site, we move it if the constraints allow. Fig. 5.3.6 illustrates
the monomer moves that are possible and the moves that are not allowed.

After updating each of the plaquettes, we shift the plaquettes around in the space
so that we can move all the monomers. We must keep in mind that even as a cellular
automaton this is still a Monte Carlo algorithm. In order for the Monte Carlo algo-
rithm to satisfy detailed balance,it is important to pick the location of the plaquettes
at random. Specifically, it is necessary to allow the same location of the plaquettes to
be chosen in the next time step as well. This guarantees that a particular move can be
reversed. More correctly, detailed balance requires that all possible moves have the
same probability of occurrence in every time step, and the random selection of a lo-
cation for the plaquettes guarantees this. The complete Monte Carlo algorithm con-
sists of selecting a location for the plaquettes, selecting a direction from NSEW for
each monomer at the center of a plaquette,and moving the monomer if the move is
allowed.

Figure 5.3.5 In order to
convert the lattice Monte J | O | | | | | l
Carlo algorithm to a cel- i

Q

lular automaton we use a

Margolus dynamics that O QOOO OOO
@)

consists of 3x3 plaque- L
ttes with buffer regions
asillustrated. Within each OOO O
of the plaquettes, we OO OOO
can move the monomers
around without interfer-
ing with other plaquettes. Q Q
The simplest way to per- O O
form moves in the 3x3 O
plaquettes is given in ™ O
Fig. 5.3.6. The periodicity ™ O O

of this partition of space
is4x4. O O O 8 O

90
O
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We note that the parallel version of the Monte Carlo algorithm is not, strictly
speaking, a Metropolis Monte Carlo algorithm,since the parallel moves do not satisfy
Eqg.(1.7.19). However, it can be readily shown that a move consisting of a number of
parallel independent moves, where each one of them is of the Metropolis form,satis-
fies detailed balance, Eq.(1.7.17). This is true because the transition matrix factors,as
does the equilibrium probability distribution.

The cellular automaton model for polymer dynamics we have constructed can be
readily simulated. However, it has a problem that suggests we continue to develop bet-
ter algorithms. The problem is that the polymer is locally very rigid and the possible
local motions of monomers are limited.One way to think about this problem is that
for very long polymers, there are two types of motion that are possible: motion of
monomers perpendicular to the contour of the polymer and motion along the poly-
mer contour. The latter includes a local stretching or compression of the polymer. For
our model, the local motion is always perpendicular to the polymer contour. If we
take a long enough polymer, there will be various small folds of the polymer, and mo-
tion along the large-scale polymer contour would be possible. However, this means
that in order to see the dynamics of very long polymers, we need a very long chain of
monomers. Since our objective is to simulate long polymer behavior using as little
computation time as possible, we would be better off to have a polymer model that
reproduces the long polymer behavior for short polymer chains.

One way to solve this problem is to generalize the cellular automaton model by
allowing the monomers that are bonded to each other to separate by one lattice space.
Bonded monomers would be located in a larger bonding neighborhood—a 5 = 5

Figure 5.3.6 In the sim- J
plest implementation of

the cellular automaton of —
Fig. 5.3.5, we use the
usual Monte Carlo process
to update a monomer lo- i
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O
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are not allowed due to
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region in two dimensions,ora5” 5" 5region in three dimensions. This choice of
bonding neighborhood is convenient, but others could be specified as well. As before,
we do not allow monomers to violate excluded volume by entering a bonding neigh-
borhood, and we do not allow monomers to break a bond by leaving. A monomer
move is accepted ifmonomers are not removed from nor added to the bonding neigh-
borhood by the move. The larger bonding neighborhood allows more flexibility to the
motion because adjacent monomers can move toward and away from each other, en-
abling local contraction and expansion of the polymer. We call this algorithm the one-
space algorithm in order to contrast it with the two-space algorithm discussed next.

The problem of polymer flexibility also has a second solution—the two-space al-
gorithm—that has some additional advantages. The simplest way to describe the two-
space algorithm in two dimensions is to consider a polymer on two parallel planes
(Fig. 5.3.7). The monomers alternate between the planes so that odd-numbered
monomers are on one plane and even-numbered monomers are on the other. The
neighbors of every monomer reside in the opposite space. We define a3~ 3 region of
cells around each monomer in the opposite space as its bonding neighborhood. This
is the region of cells in which its neighbors reside and no other monomers are allowved
to enter. To construct a polymer we place successive monomers so that each monomer
has its nearest neighbors along the contour in its bonding neighborhood. The dy-
namics is defined, as before, by requiring that the motion of a monomer be allowed
only if its movement to a new position (selected at random from NSEW directions)
does not add or remove monomers from its bonding neighborhood. This preserves
both connectivity, preventing loss of a neighbor, and excluded volume, preventing the
addition of a neighbor (Fig. 5.3.8).
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Figure 5.3.7 Schematic illustration of a two-space polymer. In two dimensions, the two
spaces are parallel planes. Monomers on the upper plane are shown as circles with dark shad-
ing; monomers on the lower plane are shown as circles with light shading. Along the poly-
mer, the monomers alternate spaces so that odd monomers are in one space (the light space)
and even monomers in the other space (the dark space). Bonds are indicated by line segments
between monomers. Monomers are bonded only to monomers in the other space. The “bond-
ing neighborhood” of each monomer is a 3x3 region of cells located in the opposite plane.
The bonding neighborhood of the dark monomer marked with a white dot is shown by the re-
gion with a double border. The two neighbors of this monomer, both light monomers, are lo-
cated in the bonding neighborhood. O
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Using this model an additional flexibility is achieved, because neighboring
monomers can be “on top of each other,” so that even the 3~ 3 bonding neighbor-
hood allows local expansion and contraction. Even more interesting, it is possible in
this dynamics to move all of the monomers in one space at the same time without
concern for interference, because both connectivity and excluded volume are imple-
mented through interactions with the other space. This allows 1/2 of the monomers
to be updated in parallel. The simple parallelism of the two-space algorithm lends it
to implementation on a variety of computer architectures. Because we can update 1/2
of the polymer at a time,there are two different ways to implement parallelism:space
partitioning and polymer partitioning. Space partitioning is the usual cellular au-
tomaton a55|gnm9f‘it of/procyésoryto dffereyt reg)bns gt spate. Polymef partitioning
d| assignment

3, ¢

the polymer ocu,;es only 7z sm l fmr'mn n’ the space, This is the case for expanded
isolated polymers, or preolems that might include a polymer moving in a static
matrix.

To show that all the monomers in one space can be moved independently, we
must show that their motion cannot result in either breaking the polymer or violat-
ing excluded volume. Since each monomer move preserves its bonded neighbors, the
polymer cannot be broken. Excluded volume is different for two monomers within a
space and for two monomers in opposite spaces. For two monomers in opposite
spaces, the excluded volume is implemented by preventing monomers from entering

= =
Connectivity| = = | Excluded
> > Volume

Figure 5.3.8 lllustration of the movement of a monomer in the two-space polymer algorithm.
The movement of a light monomer requires checking connectivity and excluded volume in the
dark space. The picture illustrates a move where the light monomer is to be moved to the
right. To ensure that connectivity is not broken, we check that no monomers are left behind.
This is equivalent to checking that there are no dark monomers in the three cells marked with
Xs on the left. To ensure that excluded volume is not violated is equivalent to checking that
there are no dark monomers in the three cells marked with Xs on the right. If there are no
monomers in these cells, then no monomers are removed from or added to the bonding neigh-
borhood of the light monomer as a result of the move. In the picture the move is allowed. O
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each other’s bonding neighborhood. The excluded volume between nonbonded
monomers is the same as that shown for the first cellular automaton in Fig. 5.3.2. For
bonded neighbors there is no excluded volume. For two monomers in the same space,
excluded volume is just the requirement that two monomers do not move onto the
same site. They can be adjacent,since they are not within each other’s bonding neigh-
borhood. In a proof by contradiction that two monomers cannot move onto the same
site, assume that two monomers were to move to the same site. In this state they will
have the same bonded neighbors. Since they start with different bonded neighbors
and our algorithm explicitly prevents any two monomers from changing their bonded
neighbors, this can not happen. There is only one exception, which we may simply
avoid (or treat specially). For a polymer of length three,the two end monomers both
have the same neighbor and they are not prevented by the algorithm from landing on
the same site.

How do we choose the next monomer to move in the two-space dynamics? In or-
der to preserve detailed balance, we must choose which of the two spaces to update at
random. This ensures that all possible moves have equal probability in each step.
Alternating spaces would not satisfy detailed balance. The order of updates of
monomers within one of the spaces does not matter and may be done sequentially
rather than randomly.

The two-space algorithm may be implemented in three dimensions by consider-
ing the polymer to be in a double space witha3” 3" 3 bonding neighborhood, and
a similar generalization of possible monomer moves. If it was desired, we could also
remap all of the monomers into a single space with an unusual implementation of ex-
cluded volume. As before,the local properties do not affect the long polymer scaling.

To test the algorithm, we can implement and simulate it and measure various
structural properties as a function of time. The simulations we perform for these tests
are in two dimensions. Rather than measuring the polymer end-to-end distance, we
choose to measure the characteristic size of the polymer as given by the radius of gy-
ration Ry(N;;t):

Rg(N;t)* =<(r(t)- <r(t)>)’ > :ﬁ AGO- <r©)>’
i (5.3.1)
<r(t)>= %é 10

This is just the standard deviation of monomer positions in space. As indicated, the
averages are over monomers rather than over time. To initialize the simulation, we
start from a straight stretched polymer that alternates from space to space. This is the
easiest way to lay out a polymer initially. Simulating the polymer dynamics then re-
sults in Fig. 5.3.9. We see that after some number of steps, the polymer relaxes and
fluctuates around an average polymer size that we can calculate as a time average. The
value of the time average, Ry(N), is indicated on Fig. 5.3.9. It is better to leave out the
first part of the simulation in calculating this average in order to eliminate the effect
of the improbable first configuration. For a long enough simulation, this correction
is unimportant.



Polymer dynamics: Simulations 499

45

©1  Rgl)

35 1

0 200 400 600 800 1000
/1200

Figure 5.3.9 Plot of the characteristic polymer size, the radius of gyration, Ry(t), as a func-
tion of time in a Monte Carlo simulation of the two-space algorithm. The two-dimensional
polymer simulated has N = 140 monomers. The simulation starts from a completely straight
conformation which has an unusually large size. After relaxation, the radius of gyration fluc-
tuates around the average value, Ry = 18.39, indicated by the horizontal dashed line. The
characteristic time over which the polymer conformation relaxes < is the correlation time of
the radius of gyration indicated by the horizontal bar. The values plotted of the radius of gy-
ration are sampled every 1200 plane updates. There are about 50 samples in a relaxation
time. O

In order to see the scaling properties of Ry(N') we calculate the average radius of
gyration for polymers of different lengths. On a log-log plot (Fig. 5.3.10) the radius of
gyration is a straight line for large N. This means that it follows a power-law behavior
where the slope of the line is the value of the exponent. The value of the exponent isin
agreement with the expected scaling result Ry,(N') ~ N " from Eq. (5.2.12) in two di-
mensions. We note that rather than plot Ry(N) as a function of the number of
monomers N, the horizontal axis of the plot is N - 1, which is the contour length of the
polymer. For long polymers, the difference is not significant. For short polymers, this
causes the results to follow more closely the long-polymer scaling behavior. The long-
polymer behavior is reached for remarkably small polymer chains of only a few
monomers. Since our objective is to simulate long polymers, this is a desirable result.

The second test is to evaluate the dynamics of relaxation of the polymer. We can
see from Fig. 5.3.9 that there is a characteristic time over which the polymer forgets
the value of its radius of gyration. Values of R,(N;t) fluctuate with a characteristic time
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Figure 5.3.10 Plot of the average (root mean square) radius of gyration as a function of poly-
mer length for the two-space algorithm in two dimensions. The average values are obtained
by simulations like that shown in Fig. 5.3.9 using 100,000 samples and without including the
first 100 samples. The horizontal axis is the number of links, N - 1, in the chain. The line in
the figure is fitted to the data above N = 10 and has a slope of 0.756. This is close to the ex-
act asymptotic scaling exponent for long polymers, v =0.75. O

shown by the horizontal bar on the plot. Over shorter times than this, values of
Ry(N;t) are correlated. Over longer times,they are essentially independent. This char-
acteristic time is the relaxation time, ©(N). To find a value for the relaxation time we
study the correlation over time of Ry(N;t) (for simplicity the dependence on N is not
indicated):

<R, (t+I)- R)R,®)- R,)>
<R, ()- Ry)* > (5.32)

AR, (©O](Dt) =

Ry =<Ry(t)>

This correlation function measures the relationship between the value of Ry(t) and
Ry(t +Dt),and is a function of Dt. The averages are over time. The overall behavior of
the correlation function can be readily understood. For Dt =0 it is normalized to 1.
For large Dt, where the value of Ry(t + Dt) is independent of Ry(t),the average of the
product in the numerator would be the product of the averages of the two factors per-
formed independently. Since the average of either factor is zero, the value of the cor-
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Figure 5.3.11 Plot of the autocorrelation function of the radius of gyration for a polymer of
length N = 140. The correlation decays approximately exponentially, so the logarithm of the
autocorrelation function is roughly linear in time. As in Fig. 5.3.9, the horizontal axis is
marked in units of samples taken. The correlation time, t, is the time at which the autocor-
relation function drops to the value 1/e. Using the integral method described in the text, the
correlation time is T = 49.09 samples of 1200 updates each, or T = 58900 updates. Only the
first 50 values shown of the autocorrelation function determine the relaxation time. [

relation function is zero. A plot of the correlation as a function of time is shown in
Fig. 5.3.11. If the relaxation of the polymer were simple, the value of the correlation
function would be an exponential in time. Since Fig. 5.3.11 is a semilog plot,it would
appear as a straight line. The plot is somewhat curved,indicating that it is not a sim-
ple exponential decay. Our objective is limited to finding a characteristic relaxation
time, T(N). We can do this by finding the time at which the correlation falls to 1/e of
its initial value. However, a better way to measure t(N), which reduces the effect of
statistical errors,is to integrate the correlation function. If we integrate out to a value
A, » 1/e then we can estimate the relaxation time using

Dt (Ao)

- A)

where Dt(A,) is the time interval at which A[R](Dt) = A,. This formula would be ex-
act if the correlation were exponential and without statistical error.

T»
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Figure 5.3.12 Plot of the relaxation time < of polymers as a function of the number of links
N - 1 for the two-space algorithm in two dimensions. The line in the figure is fitted to the
last four points that are relaxation times for polymers longer than N = 100. The slope of this
line is 2.51, which is close to the asymptotic scaling exponent expected for Rouse relaxation,
2v+1=25.0

A plot of the characteristic relaxation time ©(N) as a function of the polymer
length is shown in Fig. 5.3.12. We see that T(N) increases with length, and for long
enough polymers it agrees with the Rouse power law prediction, T(N) ~ N?*. Since
we have not included hydrodynamics, the Rouse scaling is to be expected, not the
Zimm scaling. Short polymers do not have this behavior, but the asymptotic scaling
of long polymers is satisfied for polymers longer than approximately 50 monomers.
This is still quite short for a polymer, and it suggests that we can effectively simulate
long polymer behavior using this algorithm. This concludes our tests of the scaling
behavior of the two-space algorithm. In order to apply it to the simulation of polymer
collapse, we have to modify it so that monomer-monomer aggregation can occur.

A different Monte Carlo algorithm that enables the study of the radius of gyra-
tion or other static properties, but not the dynamics of polymers, is described in
Question 5.3.1.

uestion 5.3.1 In Section 1.7 we discussed the possibility of consider-
ing Monte Carlo algorithms that were nonlocal. These algorithms would
provide the correct equilibrium ensemble, but the dynamics would be dif-
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ferent from that of local Monte Carlo algorithms. There isan interesting non-
local algorithm for polymer simulations. It can be used for various polymer
models,including both the one- and two-space polymers.A step of the non-
local Monte Carlo moves a monomer from one end of the polymer to the
other. To achieve such a change in conformation of the polymer by local
monomer steps would require many steps. However, the final conformation
is allowed,and so in a Monte Carlo process we can enable this transition. A
complete specification of the algorithm is: Select one of the two polymer
ends. Delete the end monomer. Select one of the possible neighboring loca-
tions of the monomer at the opposite end at random. If the addition does
not violate excluded volume constraints, accept the move. Otherwise reject
it. Convince yourselfthat this algorithm satisfies the requirements of a Monte
Carlo process. Program and simulate it and see that the radius of gyration
does satisfy the standard scaling behavior, but the relaxation does not. [

Polymer Collapse

5.4.1 Introduction to polymer collapse

The objective of this section is to develop an understanding of the kinetics of collapse.
We do this first through simulations, then a scaling argument, then some more sim-
ulations.One of the goals we achieve is to obtain the scaling of the collapse time of a
polymer as a function of polymer length.Our primary objective,however, is achieved
when we find that the kinetic process of collapse can systematically and reproducibly
restrict the possible conformations that are explored. This implies that kinetics of col-
lapse may reproducibly lead to a desired folded conformation without exploring all
of the possible conformations of the polymer.

The collapse of a polymer is controlled by the difference of the temperature
DT =q- T from the g-point temperature. The lower the temperature the more rapid
the collapse and the more important the kinetic effects. This, it may be noted, could
be used in experiments to determine the significance of kinetic effects during collapse.
If kinetics play an important constructive role, then collapse that occurs too close to
the g-point might not result in properly folded conformations.Of course,the collapse
under these circumstances is also slower.

The process of collapse involves many encounters between monomers that form
weak bonds to each other, like hydrogen bonds. Some of these bonds might break and
others form instead. The bonds that are formed build larger and larger aggregates. If
we are concerned about the kinetic effects,then we don't have to be overly concerned
about the bonds that are broken; we can focus only on the formation of bonds. We
then imagine a process of irreversible sticking of monomers.One way to think about
this is that the key to kinetic effects for polymers is the process of first encounter—
those monomers that find each other first.A second way to think about this is that we
are considering only large values of DT, where the energy of a single bond becomes
large compared to the temperature T and the chance of breaking it is small. This pic-
ture becomes increasingly valid for longer polymers. For long polymers, we can think
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about a coarse graining process that groups monomers and bonds together. The local
formation and breaking of a single bond is less relevant than the formation of clus-
ters. The possibility of breaking up a cluster becomes less and less likely for larger and
larger clusters because the bonding energy is larger and larger. It is possible to prove
that for long polymers we can always think about the process of collapse as if it occurs
for large values of DT. This is demonstrated formally in the following paragraph.

We can discuss the thermodynamics of polymer collapse using arguments simi-
lar to those in Section 5.2, by including an additional term in the free energy that de-
scribes the interaction of the polymer with the solvent. The energy of polymer-solvent
interaction is given by the energy of a monomer-solvent interaction times the num-
ber of such interactions. In a mean field picture where correlations are ignored, this
would be written as:

NV
Fpolymer— solvent = XKTN (L - F) (54.1)

The prefactor xKT gives the energy of interaction of monomer with adjacent solvent.
The rest is the number of monomers times (in parenthesis) the probability that sol-
vent is found adjacent to a monomer. This probability is 1 minus the volume fraction
of the solution occupied by monomers. Adding Eq. (5.4.1) to Eqg. (5.2.9) we have
dkTR N?
F(R) = Fy + ===+ (1- %)KTV —¢ 542
(R=F R (1- %) = (54.2)
We see that the interaction with the solvent acts to change the effective monomer-
monomer interaction. If the coefficient is negative, then the polymer self-attracts
and collapses. When this happens,the free energy we have written down is not suffi-
cient, because it has no terms that stop the radius from decreasing to a point. We
need to add a term that increases with increasing monomer concentration and can
stop the collapse. To do this we treat the free energy as an expansion in the concen-
tration and add a positive term with one higher power of the concentration
¢=N/R%
dkTR N? N®
F(R) = Fy+ =——=—+(1- )KTV — + fkT —= 5.4.3

(R=F 2R (1- %) = =2 (54.3)
where f is known as the third virial coefficient. It is convenient to rewrite this in terms
of the ratio of the radius to the random-walk radiusy = R/R, giving

dkT 2-d/2 NER

F(R = Fot =y +(1- KTV ——+ kT — (5.4.4)
y y

To find the expected value of y, we take the derivative and set the result equal to zero
to obtain an equation:

N3—d
0=y™2- (1- x)UNZ V2. 2f — (5.4.5)
y
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We know that (1 - ) has to be positive for T greater than g and negative for T less
than g. We can substitute a linear dependence for (1- ) =cDT. Limiting ourselves to
three dimensions, we can write Eq. (5.4.5) as:

. 1
0=y -cv (DTN '?)- 2f = (5.4.6)
y

Looking at this equation, we see that a large value of DT has the same effect as a large
value of N, since the only relevant parameter that controls the collapse is DTN */2. This
shows that for long polymers, large values of N, we can always think about the col-
lapse as occurring at low effective temperatures, or large DT = DTN, This argu-
ment provides a formal justification of our treatment of collapse using monomers
that encounter each other and stick (bond) irreversibly.

In Section 5.4.2 we describe simulations that indicate a possible relevance of
kinetics to polymer collapse. They motivate a scaling argument, described in
Section 5.4.3, which generalizes the results. Section 5.4.4 contains a discussion of the
implications of the results for protein folding and other systems. Additional simula-
tions in Section 5.4.5 explore the sensitivity of the results to the details of the polymer
structure.

5.4.2 Two-space simulations of collapse

Using the cellular automaton Monte Carlo algorithms developed in Section 5.3 we
can study the problem of polymer collapse. The simulation of polymer collapse starts
from a set of equilibrium (expanded) polymer configurations in good solvent gener-
ated by Monte Carlo simulations. To generate these conformations, we use either the
two-space algorithm with the local monomer moves or the nonlocal Monte Carlo de-
scribed in Question 5.3.1. The nonlocal Monte Carlo is faster than the local Monte
Carlo dynamics and yields the same equilibrium polymer conformations. However,
because it is nonlocal, we cannot use it for simulating dynamics such as the collapse
itself.

In order to simulate collapse of a polymer, we must allow monomers to stick to
each other and form aggregates. Once aggregates form, we have to track their shape,
move them as a unit, and allow continued aggregation at their boundaries as they
move. This will complicate our simulations substantial ly. Before we try this, is there
an easier way? Aggregation would be much simpler if we allowed monomers to move
onto the same site of the lattice. Then the aggregate would look the same as a
monomer for the simulation. We can make the simulations a little more realistic by
keeping track of the aggregate mass—the number of monomers that have accumu-
lated. Since this is easy to do, we might try to simulate collapse and see what results
we find.Later we can make tests to verify or correct the results. This approach is quite
similar to the way scaling relations were derived in Section 5.2—use the simplest
method possible, then check if it makes sense and verify it with a more complete
analysis. Whether the simple method works or not, we will have learned something
valuable about what is important and what isn’t. If the simple approach works we
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learn that the results are general and robust. If the simple approach does not work,
then by investigating what details change the results we learn what aspects of the
problem or parameters play a role. An example of this approach is the treatment of
the scaling of polymer size in Section 5.2. The random-walk model was not quite
enough to give the correct exponent. Incorporating excluded volume was necessary
and also sufficient. For simulations of polymer collapse, a simple approach that
doesn’t quite work is described in Question 5.4.1.

uestion 5.4.1 Interms of our polymer simulation algorithms, aggre-

gation is easiest to think about as the elimination of the excluded volume
constraint. This allows one monomer to approach another and bond by en-
tering its bonding neighborhood.Once they bond we would not allow them
to separate. This means we continue to impose the connectivity constraint
by not allowing a monomer to leave behind another monomer. We might
simulate collapse by keeping track of each individual monomer, even if the
monomers occupy the same site. However, there is a problem with this ap-
proach. Consider what happens to the diffusion constant of an aggregate.
Show that the diffusion constant of an aggregate is not realistic and that this
must distort the outcome of the simulations.

Solution 5.4.1 In the proposed method, monomers aggregate by moving
into each other’s bonding neighborhoods. As time goes on,aggregates form
with many monomers bonded to each other in their mutual bonding neigh-
borhoods. The problem with diffusion is that for an aggregate with N
monomers, the diffusion constant of the aggregate becomes exponentially
small with N. In order to see this, we can focus on the motion of the bond-
ing neighborhood associated with a monomer. Assume we begin with a
bonding neighborhood located at a particular place in the lattice. All of the
bonded monomers are located in this bonding neighborhood. In order for
the bonding neighborhood to displace by one square to the right, none of
the monomers must be in the leftmost set of cells of the bonding neighbor-
hood. Any monomer that stays on the left would veto the motion to the
right. Thus,in effect,in order to move to the right all of the monomers must
move to the right at the same time. Since each monomer is moving inde-
pendently, the probability of this occurring decreases exponentially with the
number of monomers in the aggregate. This is unrealistic. In a simulation,
once aggregation starts to occur, the continued motion of an aggregate is too
slow. This problem can be solved as discussed in the text, by moving aggre-
gates as a unit. [

The example described in Question 5.4.1 illustrates an important feature of com-
puter simulation and research in general.One o f the most important and yet most dif-
ficult skills to learn is to distinguish a correct from an incorrect result by simple cri-
teria. This capability is crucial when performing computer simulations because, to
one degree or another, the computer acts as a black box. We are unable to verify the
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performance of the simulation ourselves directly. This is a problem both for the pres-
ence of an error—bug—in the computer program,as well as an error in the method-
ology or approach to simulation. The latter is illustrated by Question 5.4.1. For some
students,the problem of telling whether a simulation is correct may seem an impos-
sible one. However, this is a skill that we develop. An example is the ability to deter-
mine if two numbers have been multiplied correctly. After the multiplication we can
check whether the order of magnitude is correct and whether the number is even or
odd. We can perform these and other tests independent of the multiplication itself.By
verifying that these aspects of the multiplication are correct, we increase the likeli-
hood that the entire multiplication is correct. When computer simulations are per-
formed, one of our best tools to determine whether it is valid is to view the simula-
tion as a movie. By viewing it, our qualitative concepts about the simulation can be
evaluated and compared with what is observed. For this reason, it is important to
build a mental model of how the simulations should appear. When the simulations
and mental model do not agree, we can either correct the mental model or the simu-
lations based upon further inquiry. This approach is not guaranteed to work,since we
might have an error that falsely makes the simulation agree with our mental concept.
However, performing such tests does increase the reliability of the results. In effect, it
is one way we can compare two independent models of the same process. Whenever
we can compare more than one model of the same process, we gain an understanding
of the reliability and robustness of results.

We begin to investigate the behavior of polymer collapse using the two-space lat-
tice Monte Carlo algorithm.Starting from an initial equilibrium conformation, poly-
mer collapse is simulated by eliminating the excluded volume constraint. We discuss
below why excluded volume may not be necessary during collapse even though it is
necessary for the original polymer conformation. Once the excluded volume con-
straint is eliminated,the usual monomer Monte Carlo steps are taken. Monomers are
no longer prevented from entering the neighborhood of another monomer; however,
they continue to be required not to leave any neighbors behind. This enables
monomers of the same type (odd or even) to move on top of each other. Once one
monomer moves onto another monomer, they lose separate identity and become an
aggregate. Aggregates are moved as a unit. This avoids the problem we found in
Question 5.4.1. We keep track of the mass M of an aggregate, which is the total num-
ber of monomers that reside on the same site. We can assign a diffusion constant to
the aggregate which depends on the mass of the aggregate. The most natural choice is
to set the diffusion constant according to Stokes’ law: D(M) ~ 1/M*. As discussed at
the end of Section 5.2, we use a diffusion constant in two and three dimensions that
scalesas D ~ 1/R, so in d-dimensions x = 1/d. By incorporating Stokes’ law into the
collapse, we have introduced hydrodynamics into the simulation. Hydrodynamics is
not generally part of a lattice simulation. However, by explicitly setting the diffusion
constant, we have incorporated its primary effect when there are aggregates present.

What role does the diffusion constant play in the simulations? The diffusion con-
stant is proportional to the rate at which an aggregate hops from a lattice site to a lat-
tice site (Eq. (1.4.55)). When we perform a Monte Carlo simulation, steps occur in
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discrete time. The rate of hopping is represented as a probability of making a hop in
a single time step. Thus we can implement the diffusion constant by controlling the
probability of making a hop when an aggregate is selected to move. We choose our
time scale and normalize the probabilities by setting to one the probability that a sin-
gle monomer will move when chosen. All moves, of course,may be rejected if they vi-
olate other constraints.

The polymer dynamics are then simulated by selecting at random an aggregate
(monomers are included as aggregates of mass 1),and moving the aggregate in one of
four compass directions with a probability given by the diffusion constant,and only
if connectivity constraints allow—the aggregate does not leave any neighbors behind.
In order to move the aggregate with a probability given by its diffusion constant, a
random number ranging between zero and one is compared with the diffusion con-
stant. The monomer is moved only if the random number is smaller than the diffu-
sion constant.

In order to describe the time dependence of the collapse, we must keep track of
the passage of time in the simulation. Time is normally measured in a Monte Carlo
simulation of polymers by choosing randomly N monomers to move in a single time
interval.On average,each monomer is moved once in a time interval. During the col-
lapse we must do a similar counting, where one time interval of the simulation con-
sists of performing a number of aggregate moves equal to the number of remaining
aggregates. Since the number of aggregates can change during the time interval, it is
arbitrarily taken to be the number at the end of the time interval. As monomers are
moved, a counter is incremented and compared with the number of aggregates re-
maining. When the number of moves exceeds the number of aggregates, a new time
interval is started.

When we simulate collapse, we introduce effective interactions between
monomers in the same space. This interaction is the aggregation itself. We therefore
do not consider parallel processing in the simulation of collapse. While we don't take
advantage of parallelism,other aspects of the two-space algorithm make it convenient
for these simulations.

A sequence of frames from a simulation in two dimensions is shown in Fig. 5.4.1.
Each aggregate is shown by a dot. The area of the dot is the mass of the aggregate. Most
striking in these pictures is that the ends of the polymer have a special role in the col-
lapse. The ends diffuse along the contour of the polymer, eating up monomers and
smaller aggregates until the two end aggregates meet in the middle. Along the con-
tour, away from the ends,the polymer becomes progressively smoother. The polymer
becomes more and more like a dumbbell. One way to think about this process is that
the polymer collapse becomes essentially a one-dimensional process along the poly-
mer contour. We call this process end-dominated collapse.

5.4.3 Scaling theory of collapse

In this section we develop a scaling theory that describes the results found in the sim-
ulations. Before proceeding, we summarize a mean field model for the kinetics of
polymer collapse that is relevant to conditions where the collapse occurs slowly be-



Figure 5.4.1 Frames, “snapshots,” of
the collapse of a single homopolymer
of length N =500 monomers in two di-
mensions. The plot is constructed by
placing dots of area M*/2 for an aggre-
gate of mass M. This does not reflect
the excluded volume of the aggregates,
which is zero during this collapse sim-
ulation. Simulations that include ex-
cluded volume during collapse demon-
strate similar results (Section 5.4.5).
Successive snapshots are taken at in-
tervals of approximately one-quarter of
the collapse time. The initial configu-
ration is shown at the top. The results
demonstrate the end-dominated col-
lapse process, where the ends diffuse
along the contour of the polymer ac-
creting small aggregates. O
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cause T is very close to the g-point. This means that monomers bind and unbind
many times during the collapse. Under these conditions,the behavior of the polymer
in solution is like the behavior of two liquids trying to separate because they are im-
miscible. This is called phase separation. The slowest process is the longest length scale
separation. The final structure of the system is a sphere of polymer, so the longest
length scale relaxation is the contraction of a prolate spheroid, a sausage shape, to a
sphere. The longest time scale is set by the diffusion that causes the sausage to thicken
as the ends contract. Despite the difference in the nature of this process from our
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usual polymer relaxation,the scaling of the collapse time is essentially consistent with
the Zimm relaxation of a polymer above the g-point, t(N) ~ N %

In contrast to the mean field scenario, in order to investigate the kinetic effects in
polymer collapse we must consider larger departures from the g-point. As discussed
in Section 5.4.1, a model in which monomers stick irreversibly becomes valid pro-
gressively closer to the g-point as the polymer length increases. Below the g-point,
monomers attract each other. However, unless the monomers are charged, for a long
polymer the interactions are short range. Thus we will consider monomer-monomer
interactions only when they come into contact. When two monomers come into con-
tact, they stick to each other and do not separate. Therefore, the first step in under-
standing the kinetics of polymer collapse is identifying the order in which monomers
encounter each other. In completely irreversible collapse (sticking), every encounter
causes a kinetic barrier to arise, as described in Fig. 5.1.1,that does not allow the two
monomers to separate. In a more realistic model there would be reversibility; how-
ever, the final conformation will evolve from a conformation established by the initial
encounters. This picture is convenient for our analysis because the initial encounters
between monomers occur when the polymer is expanded, and therefore we can un-
derstand it beginning from the theory we have developed for the polymers in good
solvent.

When we consider qualitatively the process of polymer collapse, we realize that
encounters of monomers that are distant from each other along the contour of the
chain are unlikely because they are also, on average,distant from each other in space.
We can therefore begin by limiting ourselves to consider aggregation as primarily a lo-
cal process where a monomer forms an aggregate with neighboring monomers along
the contour. This kind of aggregation is, however, inhibited by the existing bonds.
Aggregation occurs when two monomers that are near each other in space move close
enough to form a new bond. The easiest aggregation would occur ifa monomer could
move to aggregate with one of its neighbors,however, the neighbor on the other side
prevents this because stepping away from the other neighbor would break an existing
bond. Without curvature in the chain, the monomer is unable to move to aggregate
with either neighbor, because it is bonded to the neighbor on the other side. If there
is some curvature, then monomers can aggregate. The aggregation would cause the
curvature to decrease,and further aggregation becomes more difficult. The same ar-
gumentapplies if we consider amonomer moving to bond to its second or third neigh-
bors along the contour. These problems do not occur at the ends of the polymer. The
ends, because they have only one neighbor, can move to aggregate with the monomers
near them along the contour. Thus during collapse, the aggregates at the ends grow
more rapidly than aggregates along the contour and eventually the polymer looks like
a dumbbell. This is what was found in the polymer collapse simulations (Fig. 5.4.1).

To develop a scaling argument for irreversible collapse that distinguishes only be-
tween the ends and the average collapse along the contour, we assume that we can
summarize the collapse using two variables M(t) and Mg(t). M(t) is the average mass
of an aggregate along the polymer at time t, but it does not include the end aggregates.
Mg(t) is the mass of the aggregate at either end of the polymer. At time t the end ag-
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gregate has grown to size My(t) and the average mass along the contour is M(t). In a
small time interval,each end aggregate has a probability proportional to its diffusion
constant of collecting more mass by moving toward and accreting its immediate
neighbor aggregate. This neighbor has an average mass M(t) and is a distance a away
that does not depend on time. Thus, on average M(t) grows according to

dM(t

%() 1 M(t)Do(t)/ a2 (54.7)
By Stokes’ law (see the discussion at the end of Section 5.2) the diffusion constant
Dy(t) of the end aggregate decreases in time as its mass increases according to the re-
lationship

Do(t) 1t 1/M(t)Y (5.4.8)

We assume that the two quantities M(t) and My(t) follow a power law scaling with
time:
Mo (t) p t%°
° (5.4.9)
M(t) p t®

Inserting Eq.(5.4.9) and Eq.(5.4.8) into Eq.(5.4.7), we can ignore prefactors and set
the exponents of the time on both sides equal.

1oL s/t (5.4.10)
Solving for s, in terms of s we obtain:
Sp=(s+1)d/(d +1) (5.4.11)

The two exponents are equal when s = sy = d. This would correspond to the case of
uniform collapse, where there is no difference between collapse at the ends and col-
lapse along the chain.We will find instead that s is much smaller than d, and therefore
So iIs much larger than s.

The value of s may be obtained from a second scaling argument by considering
collapse of a polymer with fixed ends at their average equilibrium separation. This re-
moves the dynamics of the end motion from the problem. The collapse of this fixed-
end polymer would result in a straight rod of aggregates with an average mass M =
N/R, where N is the number of original monomers andR ~N" is the average end-to-
end distance of the original polymer, which is also the length of the resulting rod.
Since we have eliminated the special effects of the ends, the time over which the col-
lapse occurs can be approximated roughly by the usual dynamics of a polymer with
t~N? wherez=3vorz=_2v+1for Zimm or Rouse relaxation respectively. We think
about the fixed-end polymer collapse as a simple model for the collapse of the origi-
nal polymer along the contour away from the ends.\We are assuming that the polymer
can be approximated locally by polymer segments whaose ends are pinned. Over time,
progressively longer segments are able to relax to rods. The average mass of the ag-
gregates at a particular time t is then determined by the maximal segment length
N(t) ~ t*/? that relaxes by time t. This means that
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M(t) ~ N(t) /R(t) ~ N(£)* ¥ ~t &) (5.4.12)
or
s=(1- vz (5.4.13)

The value of s obtained from this argument (see Table 5.4.1) is small. Using
Eqg. (5.4.11) we also find that sq is much larger than s. This means that the ends will
play a special role in the collapse of long polymers. The mass of the ends increases
more rapidly than the average mass along the chain and eventually dominates the ag-
gregation. We have seen this result in the simulations of collapse.

The idea that the polymer becomes straighter with time, because regions of
higher curvature aggregate more rapidly, can be made more precise. To characterize
this behavior it is convenient to compare the distance, r, between two designated
monomers (not necessarily the polymer ends) with the contour length, I, of the poly-
mer connecting them. The contour length is the number of bonds between them
along the chain. When aggregation occurs, the small aggregates that form,appearing
like beads on the chain, decrease the effective contour length of the polymer. We can
define the effective contour length by counting the minimum number of monomer-
monomer bonds that one must cross in order to travel the polymer from one desig-
nated monomer to the other. Bonds formed by aggregation allow us to bypass the
usual polymer contour. In this way the effective number of links in the chain decreases
over time.

We consider the scaling of r(l,t) as a function of |. Before collapse begins (t =0),
the scaling is given by r ~ IV, This is just the usual scaling of the end-to-end distance
of a self-avoiding random walk, Eq.(5.2.11), because the number of links is essentially
the number of monomers. If the polymer becomes straighter, the scaling exponent
will increase over time. At long enough times, the scaling will approach that of a
straight line (r ~ ). However, the smoothing occurs first at the shortest length scales.
The characteristic time over which a particular length of polymer becomes straight is
the relaxation time of the polymer segment. We can approximate this as in the previ-
ous paragraph using the usual relaxation, t ~ 17

We can summarize the behavior of the polymer over time using a universal scal-
ing function. This function describes how the end-to-end distance depends on the
contour length as a function of time. The essential idea of the scaling function is that
the behavior on different length scales can be described by the same function.
Specifically we have a relationship of the form:

r(.)=11(t/17) (5.4.14)

This relationship summarizes our previous discussion through properties of the uni-
versal scaling function f (w). f(w) is a constant for large values of its argument (long
times) because at long times r ~ |. We also know that it scales as w* ¥>* for small values
of its argument in order to ensure the correct scaling of the self-avoiding random walk,
r~I1",att® 0. The crossover between one behavior and the other occurs at a particu-
lar value of the argument, w = wy, so that the relaxation time satisfies t =t =wgl*~ 12
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This concludes our analytical study of irreversible collapse. This analysis has
given us the tools to discuss the simulations in a way that will show us important fea-
tures of the collapse. In particular we can study the behavior of the quantities M(t),
Mo(t), rand I. Before we do so we address one of the questions we asked before about
the simulations.

In our simulations, during polymer collapse we eliminated the excluded volume.
Isn’'t the excluded volume important for collapse? We know that excluded volume is
relevant to the initial polymer conformation in good solvent. Moreover, excluded vol-
ume is relevant to the final collapsed state of the polymer—uwithout excluded volume
the polymer collapses to a point. However, we see that excluded volume does not en-
ter in the scaling argument leading to the relationship between s and sy, Eq. (5.4.11).
This argument describes the kinetics of collapse itself. Thus, we do not expect ex-
cluded volume to affect the behavior of the collapse. In particular, we do not expect it
to affect the relationship between s and so. According to Eq.(5.4.11) this relationship
depends only on the dimension d of the space.On the other hand, the value of s de-
rived in Eq.(5.4.13) is dependent on the values of the exponents v and z. This means
that we can expect the precise values of s and s, to be somewhat more sensitive to the
presence of an excluded volume. However, the range of possible values (Table 5.4.1)
indicates that the overall behavior of the collapse should not be affected. In
Section 5.4.5 we will describe simulations that have excluded volume, and find that
the results are indeed similar. We can understand why the excluded volume is not im-
portant because during collapse the kinetics is primarily affected by the net attractive
interaction between monomers, rather than the hard core repulsive part.

We can analyze the simulations to compare with the scaling argument by study-
ing the average mass of the polymer except the ends, M(t), and the mass of the ends,
Mo(t). The result of averaging many collapse simulations are shown in Fig. 5.4.2 for
two and three dimensions. As indicated, two lengths of polymers were simulated in
each case. Longer polymers follow the collapse of the shorter polymers but extend the
curves to longer times. This is consistent with the picture of end-dominated collapse,
where the only effect of a longer polymer is increasing the length of time till the end
aggregates meet in the middle.

s=(1- v)/z z=3v z=2v+1
2- d:v=075 0.11 0.10
3-d:v=06 0.22 0.18
v=05 0.33 0.25

Table 5.4.1 Values of the exponent s from the scaling relation Eq. (5.4.13) using different
assumptions for v and z. v = 0.5 would occur for a random walk without excluded volume in
any dimension. The other values of v are for self-avoiding random walks. z = 3v is for Zimm
relaxation that includes hydrodynamics. z = 2v + 1 is Rouse relaxation that does not include
hydrodynamics. All of these values are small and indicate that s, is much larger. O
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Figure 5.4.2 Plot of the time evolution during polymer collapse of the average total mass of
the polymer ends My(t), and of the average mass M(t) of aggregates not including the ends.
(a) shows collapse in two dimensions of polymers of length N = 1000 (averaged over 500 sam-
ples), and N = 500 (1000 samples). (b) shows collapse in three dimensions of polymers of
length N =500 (500 samples), and N = 250 (1000 samples). Scaling exponents fitted to the
longer polymer collapse for times between the vertical dashed lines are given in Table 5.4.2
and discussed in the text. [
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Both M(t) and Mq(t) follow a power-law scaling behavior. Exponents from the
lines in Fig.5.4.2 are givenin Table 5.4.2. There are two results from our scaling analy-
sis that we can compare with. The more reliable derivation is that of the relationship
between s and s,. A comparison is made in Table 5.4.2 by calculating the expected
value of sy(s) using the scaling relation, Eq.(5.4.11),and the measured value of s. This
is compared with the measured value of s,. The agreement with the scaling relation-
ship is striking since there are corrections which may be expected due to the neglect
of the effects of small rings, or changes over time in curvature and compression of the
polymer. The statistical errors are smaller than the quite small difference between the
expected and measured value of s. This difference, in principle, might be real but
could also be due to systematic error from the use of polymers that are not long
enough to determine this level of precision.

The comparison of the value of s obtained from the simulation with the values
predicted by the scaling argument (Eg.(5.4.13)) show that there is qualitative but not
quantitative agreement. The value in two dimensions does not agree with that ex-
pected—it is halfway between the values expected in two and three dimensions. The
value in three dimensions is very close to that expected without excluded volume
(v = 0.5) and with Zimm relaxation. There are two ways to discuss this: one is to
downplay the success and the other to downplay the failure. All the values of the ex-
ponent s are small, and this suggests that the general discussion in the scaling argu-
ment is essentially correct. We could also excuse the disagreement in two dimensions
because we are using Stokes’ law to move aggregates, and hydrodynamics is not well
behaved in two dimensions (see the end of Section 5.4.2). The estimate given for three
dimensions using Zimm relaxation and without excluded volume s = 1/3is in coin-
cidence with the simulations. It is hard to believe that this result can be justified ex-
cept as a coincidence. While it is true that we implement hydrodynamics by perform-
ing moves of aggregates according to Stokes’ law, and that we have performed the
simulation without excluded volume, nevertheless, the initial conformation of the
polymer should set the distances that control the collapse time. This initial polymer
conformation is for a polymer with excluded volume. This would suggest that a

S So So(s) [Eq. (5.4.11)] So - SolS)
1d 0 0.5 0.5 0
2-d 0.154+0.001 0.7734%0.0006 0.7695%0.0006 0.004+0.001 (0.5%)
3-d 0.337+0.002 0.982+0.005 1.003+0.002 - 0.021+0.005 (2%)

Table 5.4.2 Power-law exponents for the scaling of end mass (sg) and mass along the con-
tour (s) during polymer collapse. The first column gives the dimension of space. The second
and third columns are fitted to the simulation results between the dashed lines in Fig. 5.4.2.
Fits were chosen to minimize standard errors. Errors given are only statistical—they reflect
the standard deviation of the simulation data around the fitted line. The simulation results
are compared to the scaling relation, Eq. (5.4.11), in columns four and five. Results in one
dimension are exact, since there is no possibility of collapse along the contour, s =0. O
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smaller value of s should be expected. For our purposes, the precise value of s is not
essential, but the central result of the end-dominated collapse is.

Finally, to investigate the validity of the universal scaling of polymer smoothing,
Eq.(5.4.14), we plot in Fig. 5.4.3 values of r/l against the rescaled time,w =t /17, with
z =3v. This is a way of showing directly the function f(w). What is important in this
figure is that all the different values lie along the same curve. This is the significance
of the universal scaling function. The generally good coincidence of the different
curves confirms that the simulation obeys Eq. (5.4.14). Moreover, we see that the
function f (w) approaches the expected value, 1, at large values of w, consistent with
the polymer becoming straighter with time. If we try to change the assumptions we
find a poorer fit. For example,assuming r ~ 1% at long times or changing slightly the
value of z would lead to visibly poorer coincidence of the curves. The fit in two di-
mensions is somewhat less precise. This may be due to the difficulties with modeling
hydrodynamics in two dimensions, or it may be due to other effects we neglected such
as ring formation during collapse.

1.00 5
3-d
r
I
0.50
0.00 4 . :
0 2 4 6 8
t/ I3

Figure 5.4.3 Plot of the rescaled end-to-end polymer segment distance, r/l, as a function
of the rescaled time, t/1. Results for both two and three dimensions are shown. In both
cases the polymer contained 500 monomers and results were averaged over 200 collapses. The
many curves in each case arise from different values of |. The coincidence of the curves is con-
sistent with validity of the universal scaling relationship, Eq. (5.4.14). The plot shows the
universal scaling function, f(w). This function describes the structure of the polymer contour,
not including the ends. For large w it approaches one, consistent with the expectation that
the polymer contour becomes straight at long times. O
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5.4.4 Implications of end-dominated collapse

We have found that polymer collapse in both two and three dimensions appears to re-
duce essentially to the behavior of a one-dimensional collapse. In one dimension we
would have a starting conformation of a set of monomers along a line. Then, without
excluded volume,the ends in each time step can move to occupy the same site of,and
aggregate with,their neighbor. In each time step the end has equal probability to try
to move away (it cannot) or to try to move on top of its neighbor. Thus, 50% of the
steps, it aggregates with its neighbor. Collapse thus proceeds by the driven diffusion
of the polymer ends. The driving force is the aggregation of the monomers. The only
maoadification of simple diffusion is the change in the diffusion constant due to the
accretion of mass onto the ends. In two and three dimensions,the results are similar.
Ends diffuse along the contour accreting monomers and smaller aggregates.

We can analyze our results to give the scaling of the collapse time t©(N). In end-
dominated collapse this is the time that passes until the end aggregates meet in the
center. By this time the end aggregate has reached one-half of the mass of the whole
polymer:

Mo(r(N)) U N (5.4.15)

where we need to write only that the end mass is proportional to the number of
monomers. Substituting Eq. (5.4.9) we obtain

T(N) ~NY® (5.4.16)

From the simulations we find that 1/s, = 1.293 + 0.001 in two dimensions and
1.018 + 0.005 in three dimensions (errors are statistical). Thus the collapse time is pre-
dicted to scale linearly with polymer length in three dimensions. This indicates that
kinetic effects through end-aggregation accelerate the collapse from the usual relax-
ation time scaling of t(N) ~ N°Z,

Even without a value of s, from the simulations, we can see that end-aggregation
must accelerate the collapse from the equilibrium relaxation. The scaling relation
Eq.(5.4.11) gives a minimum possible value for the exponent s,. S, is @ monotonic in-
creasing function of s. The minimum value of s, results from setting s = 0 in the scal-
ing relation. This corresponds to collapse without any aggregation along the contour.
The only process that occurs is the increasing mass of the ends. The minimum value
Sg = 2/3(3/4) in two (three) dimensions gives the slowest possible collapse, or the
largest collapse-time scaling. Thus the maximum possible collapse-time scaling ex-
ponent (1/sy) is3/2 in two dimensions and 4/3 in three dimensions. These exponents
are still significantly smaller than the usual polymer relaxation-time scaling exponent,
z» 2. They are also not dramatically different from the values we found using s, from
the simulations.

When we simulate a system like a polymer, we are always concerned that our sim-
ulation results are characteristic only of the size simulated and not of the regime we
are interested in.Our objective is to understand the properties of long polymers. Thus
we must ask the question: Are the polymers simulated long enough to show the cor-
rect collapse mechanism for very long polymers? We can address this question
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because we know how the collapse-time scales with the size of the system for end-
dominated collapse. If another process were to become the dominant process for
longer polymers, it would have to scale as an even lower power of N than the end-
dominated collapse process. Only then could it become important for longer poly-
mers. However, the scaling of the collapse time we found is significantly lower than
other known collapse mechanisms. The mean field collapse scaling near the g-point
is similar to the usual polymer relaxation. Thus it is unlikely that for longer polymers
a faster process will dominate.

How can we relate our discussion of polymer collapse to the problem of protein
folding? Our results on the end-dominated collapse of polymers indicated that col-
lapse can be faster than would be expected from the usual polymer dynamics. Instead
of a scaling of O(N?) we have a scaling of O(N). This appears to be a significant re-
duction in the time; however, when we consider this in light of our discussions in the
previous chapter, we see that this is not as significant as we might expect. Both scal-
ing exponents are reasonable for a polymer collapse time since there is enough time
for either scaling to reach its conclusion. We allowed, in principle, for exponents up
to O(N*). Even if O(N*) is generous, O(N?) appears quite possible.

Where does the difficulty then arise? The difficulty is that we have considered all
of the collapsed polymer conformations as equally acceptable. All we have shown is
that we can make a transition from expanded to collapsed polymers in a reasonable
amount of time. We have not shown that we can select the right compact form of the
polymer. This is where the simulations can provide their most important clue to the
benefits of kinetics.End-dominated collapse does not give an arbitrary compact poly-
mer. The process of sequential accretion of monomers and small aggregates by the
ends should reproducibly yield a particular compact structure.

Unlike a general uniform collapse of the polymer, the end-dominated collapse
proceeds by an orderly process of sequential monomer encounters. These encounters
build up the aggregate compact structure (globule) in a manner that is not random.
A consequence of this orderly kinetic process is that the resulting globules may be
expected to be selected from a limited subset of all possible globules. This is precisely
what we have been looking for—a kinetic process that might enhance the process of
arriving at a specific folded protein structure. One of the most striking implications
of the end-dominated collapse process is that the order of monomer encounters is es-
sentially independent of the initial conformation of the polymer. It is not easy at this
point to see what the precise nature of the globules that are formed are. However, we
can note that they are likely to be formed out of two parts corresponding to the ag-
gregate formed from one end and the aggregate formed from the other. A more sub-
tle feature of this process is that the globule is likely to contain fewer knots than would
be generally found in a globule. This is because the diffusive end motion tends to un-
knot the polymer, since the ends are passed through any knots rather than closing or
tightening them. To discuss this formally would require defining knots in a polymer
with free ends, which is a feasible but tricky task.

End-dominated collapse is also consistent with a model,called the molten glob-
ule model,that has been proposed for the kinetics of protein folding. It suggests that



Polymer collapse 519

there is a fast initial process of forming a compact globule followed by a rearrange-
ment of the globule to form the final folded protein.Our simulations and scaling re-
sults describe the fast process by which a polymer makes a transition from an ex-
panded form to a compact globule. The rearrangement process should take more time
and is likely to be the limiting step in the formation of the protein. Unlike the collapse,
this process requires segments of polymer to move around each other, which is a
much more difficult dynamic process. The significance of the end-dominated collapse
is that by preselecting the initial compact globule,the rearrangement process is short-
ened and does not necessarily explore all possible compact conformations of the pro-
tein before settling in the desired state.

There is another interesting feature of the end-d ominated collapse relevant to
proteins. Proteins, when they are formed,are not formed all at once. Instead the chain
emerges sequentially from a ribosome. This process is called extrusion. It is thus quite
likely that the protein in the cell (in vivo) performs much of the folding sequentially
as it is formed. In many ways this is similar to the sequential process of end-
dominated collapse. Thus the polymer during extrusion has a natural sequential
process for forming a definite final folded structure. The appearance of end-
dominated collapse in polymer simulations may simply reveal why folding also works
when the protein is unfolded and refolded in vitro. One possible difference between
the two environments is that the collapse process in vitro occurs from both ends while
during extrusion it occurs from one end only.

We note that it has yet to be demonstrated experimentally that kinetics plays a
significant role in protein folding, or in other processes like DNA aggregation. There
is an interesting consequence of end-dominated collapse that has relevance to exper-
imental tests. End-dominated collapse represents a significant departure from the
usual rule of thumb that linear and ring polymer dynamics are similar. The primary
other exception to this rule is reptation in polymer melts. When polymers are placed
together at high density, the resulting fluid is called a melt. The motion of polymers
in the melt is inhibited by entanglements. Essentially the only way a polymer can
change position is to move along its own contour by local stretching and contraction.
This is a process, called reptation, that is possible for polymer chains. For rings it is
not. Other processes must become relevant for rings, and motion should be much
slower. The simulations and scaling argument we have described in this chapter indi-
cates that ring collapse should be significantly slower than linear polymer collapse.
This is one of the possible ways that the predictions of these simulations could be
tested by experiment.

5.4.5 Variations in the polymer microstructure

In this section we discuss additional simulations of homopolymer and heteropolymer
collapse. The objective is to investigate how robust are the results we have found in the
simple simulations discussed in Section 5.4.2 and the scaling argument in
Section 5.4.3. If the results are sensitive to the choice of model,then we should doubt
their applicability to real polymers. On the other hand,if the results are robust then
we can feel confident that they will also be relevant to real polymers. For a variety of
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systems the results suggest that collapse of long polymers is dominated by diffusion
of the polymer ends, which accrete monomers and small aggregates. Collapse does
not proceed uniformly along the polymer. However, in a model where only pairwise
bonding is allowed,the collapse is uniform, since more flexible end motion does not
result in continued end accretion.

All of the simulations in this section are in three dimensions and are based on the
one-space cellular automaton algorithm described in Section 5.3. The one-space al-
gorithmusesa5” 5° 5bonding neighborhood for monomers. It allows adjacent
monomers to separate by one lattice site providing flexibility in the polymer dynam-
ics. Motion of monomers is performed by Monte Carlo steps that satisfy the polymer
constraints.

We summarize briefly the general process of simulation of collapse,then discuss
each of several models that test various aspects of the dependence of the results on the
local properties of the polymer. As with the two-space simulations, the simulation of
collapse starts from a set of equilibrium polymer configurations.Each of the models
consists of a particular scenario for monomer-monomer sticking whereby aggregates
are formed from individual monomers. In all models, once formed, aggregates are
moved as a unit. The collapse simulations include only aggregation, and not disag-
gregation. As discussed in Section 5.4.3, the primary effect of hydrodynamics is in-
cluded by scaling the diffusion constant of aggregates by Stokes’ law. For the three-
dimensional simulations described here, D ~ 1/M¥2. Polymer dynamics are
simulated by selecting an aggregate (monomers are included as aggregates of mass 1)
and moving the aggregate in one of the four compass directions with a probability
given by the diffusion constant, and only if connectivity constraints allow—the ag-
gregate does not leave any neighbors behind. One time interval consists of perform-
ing a number of aggregate moves equal to the number of remaining aggregates,taken
to be the number at the end of the time interval.

Six different models of polymer microstructure are described in the following
numbered paragraphs. These simulations are also compared with the two-space col-
lapse simulations that did not include any form of excluded volume during collapse.
All of the six models were simulated using polymers of length N = 250. The first two
models explore variations in the collapse of homopolymers. The third and fourth
models explore heteropolymer collapse. The results of these four models are shown
in Fig. 5.4.4. The last two models only allow pairwise bonding. Results of these two
models are shown in Fig. 5.4.5.

1. The first version of one-space collapse explores the significance of excluded vol-
ume. Since excluded volume is essential for the final structure of the polymer as
well as the initial structure,it might be expected to be relevant to collapse. This
was completely neglected in the two-space simulations. In these one-space sim-
ulations, during collapse, monomers are allowed to enter the bonding neighbor-
hood. However, excluded volume is maintained during collapse by preventing
monomers from occupying the same lattice site. Monomers aggregate by moving
adjacent (NSEW) to other monomers. As before,aggregates are moved as a unit
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Fig. 5.4.4 Plot of the time evolution during polymer collapse in three dimensions of the av-
erage total mass of the polymer ends, My(t), and of the average mass, M(t), of aggregates not
including the ends. The different lines correspond to the different models described in the
text. The end mass evolution is shown by a solid line and the mass along the contour is shown
as a dashed lire. The bold curves are for the two-space algorithm (Fig. 5.4.2). All of the oth-
ers are for variations on the one-space algorithm for polymers of length N = 250 and are av-
eraged over 300 simulations: (1) for the one-space polymer including excluded volume; (2)
same as (1) but preventing aggregation of nearest neighbors along the contour; (3) a model
for heteropolymer collapse where only the odd monomers aggregate; (4) is similar to (3) but
monomers that aggregate are selected at random. O

using a step probability governed by Stokes’ law. This means that we must keep
track of each aggregate’s structure in space,and move it as a unit. After a step we
must check all sites at the boundary of the aggregate in order to perform addi-
tional aggregation. From the figure we see that the inclusion of excluded volume
appears to increase the rate of collapse. Conceptually, we might think about this
as resulting from a decrease in the distance monomers need to travel in order to
aggregate. Both exponents s and s, increase slightly. However, we see that ex-
cluded volume does not affect overall behavior and does not even dramatical ly
change the values of the exponents (Fig. 5.4.4 and Table 5.4.3).

2. One of the strange features of model (1) is that monomers aggregate by directly
attaching to their neighbors along the chain. Thus, much of the aggregation
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S So So(S) So- SofS)
1-d 0 0.5 0.5 0
2-d 0.154+0.001 0.773+0.001 0.769+0.001 0.004+0.001 (0.5%)
3 d 0.337+0.002 0.982+0.005 1.003+0.002 -0.021+0.005 (2%)
-d (1) 0.484+0.002 1.102+0.004 1.113+0.002 -0.011+0.004 (1%)
-d (2) 0.453+0.002 1.079+0.004 1.090+0.002 -0.011+0.004 (1%)
-d (3) 0.061+0.001 0.363+0.001 0.796+0.001
-d (4) 0.050+0.001 0.293+0.001 0.787+0.001

Table 5.4.3 Power-law behavior exponents fitted to the simulation results of Fig. 5.4.5. The
results from the two-space algorithm (Table 5.4.2) are included for comparison in the first
three lines. Fits were chosen to minimize standard errors. Errors given are only statistical.
Results are compared to the scaling relation given by Eq. (5.4.11). As discussed in the text,
the heteropolymer collapse results are not in agreement with this scaling relation. O

occurs between monomers that previously were already bonded as neighbors.
This would be a particularly convenient process for end aggregation and may ex-
aggerate its importance. The aggregated structure of model (1) is formed out of
rodlike structural components. These rods arise because the attachment to near-
est neighbors follows the contour of the polymer. A more realistic model would
exclude such nearest-neighbor aggregation. The second version of one-space col-
lapse is similar to model (1) except that nearest neighbors along the contour are
prevented from aggregating to each other. Monomers or aggregates are forced to
move around their nearest neighbor to bond to a monomer further along the
chain. This prevents the simplest end monomer accretion of nearest neighbors.
Simulations show, however, that not only does the end-domination persist but
(Fig. 5.4.4 and Table 5.4.3) that this change does not change significantly the ex-
ponent values. Presumably this is because the need to move around neighbors to
aggregate affects collapse along the contour similarly to its affect at the ends,
making both more difficult. The only apparent effect is an overall slowing of the
collapse as seen by the shift of the M(t) and M(t) curves to longer times. The fol-
lowing simulations (3)—(6) are based on model (2).

3. We now consider heteropolymers. Thus far our discussions, both in simulations
and in scaling arguments, have not distinguished between different monomers.
However, there are significant differences in the bonding of different monomers
in heteropolymers. In order to investigate the effect of such variation, we take an
extreme case where there are some monomers that bind and some that do not
bind at all. This is a simple model of proteins that takes into account the differ-
ence between hydrophobic and hydrophilic monomers. In our language, this is
the same as monomers that want to collapse by aggregation and monomers that
do not. The third one-space model of collapse includes both kinds of monomers.
Using the one-space algorithm as in (2), only odd monomers are allowed to ag-
gregate. This is an ordered 50% hydrophilic version of this model of hy-
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drophilic/hydrophobic collapse. The way the collapse works is that monomers
that do not want to bind at all must be on the outside of an aggregate. The ag-
gregate has an interior filled with bonding monomers and a surface of non-
bonding monomers. These nonbonding monomers prevent further aggregation
and thus slow the continued formation of larger aggregates. The process of in-
creasing shielding is not included in our scaling arguments, so Eq. (5.4.11)
should not be expected to apply, and it doesn’t. Despite the shielding of contin-
ued collapse by nonbonding monomers, the collapse is still dominated by end
motion for the length and time scale simulated. The overall collapse is signifi-
cantly slowed—the exponent s, is reduced to a third of its value for the ho-
mopolymer case. There is also some indication that the collapse would com-
pletely saturate in this case and would not go through to completion. The overall
fraction of hydrophobic (nonbonding) monomers must be reduced to reach
complete aggregation.A reduction in the proportion of hydrophobic monomers
would make the simulation results more like the previous homopolymer models.

4. The fourth version of one-space collapse is similar to the third version but tests
the relevance of the order in model (3). Instead of alternating the hydrophobic
and hydrophilic monomers along the chain,they are placed at random along the
chain. The collapse behavior is almost the same as in (3). Opportunistic collapse,
which results from convenient local arrangement of bonding monomers,speeds
the collapse at first. However, the scaling of the masses is slightly lower, and even-
tually collapse is slightly slower at later times.

5. In order to make end-dominated collapse as unfavorable as possible, we must
eliminate the advantage that is gained by the high mobility of the ends. We can
do this by eliminating entirely the continued aggregation. The fifth version of
one-space collapse starts from the same conditions as (2);however, collapse only
includes pairwise bonding. Once two monomers are bonded, other monomers
that become adjacent are not aggregated. This is not like protein folding, since
each amino acid can form two hydrogen bonds with other amino acids. Also,
there is additional bonding due to van der Waals forces. Nevertheless, we can con-
sider the pairwise bonding model as a \ersion of collapse.End dominance in this
case would correspond to a progressive pairing from the ends inward. A plot of
the pair-density along the chain (Fig. 5.4.5) shows that, despite a tendency toward
more rapid pairing at the ends, the collapse is essentially uniform. Thus in this
model we do not have end-dominated collapse.

6. The sixth and final version of collapse (Fig. 5.4.5) is like the fifth version where
pairwise bonding is allowed ;h owever, only even-odd monomer combinations are
allowed for pairwise bonding. The results do not differ significantly from (5).

We have learned from these simulations that in heteropolymer collapse the val-
ues of the exponents s and s, may change; however, only when we go to an extreme
and unrealistic model of polymer aggregation do we lose the end-dominated collapse
entirely.
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Figure 5.4.5 Plots of the average aggregate mass at every site along the contour when col-
lapse only allows pairwise bonding. Each curve shows the averages at a particular time, with
later times having higher masses. Collapse is uniform except for a tendency for the monomers
near the end to pair up first. The minimum mass is 1 and the maximum mass is 2. The col-
lapsing polymer has a length N = 250. By symmetry only the first 125 sites are shown. (a)
shows the case (5) of arbitrary monomer bonding with the exception of no nearest-neighbor
bonding; (b) shows the case (6) of only odd to even monomer bonding. Progressively later
times are shown separated by (a) 50 updates and (b) 100 updates. For clarity only the first

ten times are shown. 0
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The scaling time t(N) ~ N can also be calculated for the first four one-space
models of collapse. For homopolymer collapse 1/s,=0.907 £ 0.003 in model (1) and,
0.927 + 0.003 in model (2). Thus the collapse time still scales approximately linearly
with polymer length in three dimensions. In contrast,the time for heteropolymer col-
lapse with nonbonding monomers scales as 1/sy, = 2.75 + 0.007 in model (3) and
3.41£0.008 in model (4). This is much slower than the heteropolymer collapse. It also
approaches the limit of our allowed exponents for protein folding discussed at the be-
ginning of Chapter 4.

of the microstructure of a polymer is as a change in how the diffusion
constant of an aggregate grows with its mass. For example, if there are
monomers that do not aggregate at all,they become like a surface coating on
an aggregate that prevents further aggregation. Rather than model this as a
limitation in aggregation, we could simplify the effects by modeling them as
a progressively larger diffusion constant that would also limit continued ag-
gregation. Find the relationship between s and s, for different values of x in
D ~ 1/M*. Then simulate the collapse of a polymer for different values of x
and see if the scaling relationship between s and s, continues as before. How
should this affect the value of s?

Solution 5.4.2 The generalized form of Eq. (5.4.11) is:
So=(+1)/(x+1) (5.4.17)

Simulations of collapse when x is varied are shown in Fig. 5.4.6. The end-
dominated collapse occurs for all values of x that are simulated. The scaling
relationship continues to be satisfied.

The size of s appears to be nearly constant.A quite reasonable value for
s, may be obtained from a single value for s in each dimension and use of the
scaling relation Eq. (5.4.17). In three dimensions, s appears to decrease
slowly with increasing x. [

Question 5.4.2 One way to think about the effect of various properties

5.4.6 Conclusions

In this chapter our objective was to understand how kinetic processes could acceler-
ate the formation of a selected final polymer structure. We found that there is a dis-
tinctive Kinetic process that occurs in the initial stages of polymer collapse that results
in a characteristic order of monomer-monomer encounters. This suggests that it
might be possible to design a sequence of amino acids that fold into a particular struc-
ture using this order of events. The polymer might not reach the desired structure if
the polymer were to explore all possible conformations. We have not demonstrated
that this process applies specifically to proteins, but the robustness of the end-
dominated collapse to variations in models suggests that it should play some role.Our
analysis has been specific to polymers. How can we generalize this discussion to apply
more generally to complex systems? The most important feature of these simulations
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Figure 5.4.6 Exploration of the variation of polymer collapse with x, where the diffusion con-
stant scales as D ~ 1/M*. In the top panels of (a) and (b) are plots of the time evolution dur-
ing polymer collapse of the average total mass of the polymer ends My(t) and of the average
mass M(t) of aggregates not including the ends. (a) shows collapse in two dimensions of poly-
mers of length N = 250 (500 samples) for x = {0.4, 0.5, 0.6, 0.75, 0.9, 1.0}. (b) shows col-
lapse in three dimensions of polymers of length N =250 (500 samples) for x = {0.5, 0.75, 1}.
The value at x = 1/3 is from polymers of length N = 500. In the bottom panels the scaling
exponents sy and s obtained from fits to the plots of My(t) and M(t) are plotted as a function
of x. The value of sy(s) obtained from the scaling relation Eq. (5.4.16) is also plotted. It is in
good agreement with the values of sg found in the simulations. O

is the recognition that there may be a natural sequentiality to events. Such sequen-
tiality does not necessarily mean that a desired structure will be attained; however, it
provides an opportunity for control over the final structure. This leads us to the topic
of self-organization and organization by design, which we address in the following
two chapters.



