186 Introduction and Preliminaries

suddenly shifted above their boiling temperature. Small bubbles would then nucleate
along the ionization trail left by charged particles moving through the tank. The bub-
bles could be photographed and the tracks of the particles identified. Such detectors
were called bubble chambers. This methodology has been largely abandoned in favor
of electronic detectors. There is a limit to how far a system can be supercooled or su-
perheated. The limit is easy to understand in the Ising model. If a system with a pos-
itive magnetization m is subject to a negative magnetic field of magnitude greater
than zJm, then each individual spin will flip bowN independent of its neighbors. This
is the ultimate limit for nucleation kinetics.

1.6.9 Connections between CA and the Ising model

Our primary objective throughout this section is the investigation of the equilibrium
properties of interacting systems. It is useful, once again, to consider the relationship
between the equilibrium ensemble and the kinetic CA we considered in Section 1.5.
When a deterministic CA evolves to a unique steady state independent of the initial
conditions, we can identify the final state as the T = 0 equilibrium ensemble. This is,
however, not the way we usually consider the relationship between a dynamic system
and its equilibrium condition. Instead, the equilibrium state of a system is generally
regarded as the time average over microscopic dynamics. Thus when we use the CA
to represent a microscopic dynamics, we could also identify a long time average of a
CA as the equilibrium ensemble. Alternatively, we can consider a stochastic CA that
evolves to a unique steady-state distribution where the steady state is the equilibrium
ensemble of a suitably defined energy function.

Computer Simulations (Monte Carlo,
Simulated Annealing)

Computer simulations enable us to investigate the properties of dynamical systems by
directly studying the properties of particular models. Originally, the introduction of
computer simulation was viewed by many researchers as an undesirable adjunct to an-
alytic theory. Currently, simulations play such an important role in scientific studies
that many analytic results are not believed unless they are tested by computer simula-
tion. In part, this reflects the understanding that analytic investigations often require
approximations that are not necessary in computer simulations. When a series of ap-
proximations has been made as part of an analytic study, a computer simulation of the
original problem can directly test the approximations. If the approximations are vali-
dated, the analytic results often generalize the simulation results. In many other cases,
simulations can be used to investigate systems where analytic results are unknown.

1.7.1 Molecular dynamics and deterministic simulations

The simulation of systems composed of microscopic Newtonian particles that expe-
rience forces due to interparticle interactions and external fields is called molecular
dynamics. The techniques of molecular dynamics simulations, which integrate
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Newton’s laws for individual particles,have been developed to optimize the efficiency
of computer simulation and to take advantage of parallel computer architectures.
Typically, these methods implement a discrete iterative map (Section 1.1) for the par-
ticle positions. The most common (Verlet) form is:

r(t)=2r(t- DX) - r(t- 2Dt) +Dt*a(t- Dt) (1.7.1)

where a(t) = F(t)/m is the force on the particle calculated from models for interparti-
cle and external forces. As in Section 1.1, time would be measured in units of the time
interval Dt for convenience and efficiency of implementation. Eq. (1.7.1) is alge-
braically equivalent to the iterative map in Question 1.1.4, which is written as an up-
date of both position and velocity:

F(t) =r(t- Dt) + Dtv(t- Dt/2)
v(t+Dt/2) =v(t- Dt/2) +Dta(t)

As indicated, the velocity is interpreted to be at half integral times, though this does
not affect the result of the iterative map.

For most such simulations of physical systems,the accuracy is limited by the use
of models for interatomic interactions. Modern efforts attempt to improve upon this
approach by calculating forces from quantum mechanics. However, such simulations
are very limited in the number of particles and the duration of a simulation.A useful
measure of the extent of a simulation is the product Nt,,,, of the amount of physical
time t,,,,, and the number of particles that are simulated N. Even without quantum
mechanical forces,molecular dynamics simulations are still far from being able to de-
scribe systems on a space and time scale comparable to human senses. However, there
are many questions that can be addressed regarding microscopic properties of mole-
cules and materials.

The development of appropriate simplified macroscopic descriptions of physical
systems is an essential aspect of our understanding of these systems. These models
may be based directly upon macroscopic phenomenology obtained from experiment.
We may also make use of the microscopic information obtained from various sources,
including both theory and experiment, to inform our choice of macroscopic models.
It is more difficult, but important as a strategy for the description of both simple and
complex systems, to develop systematic methods that enable macroscopic models to
be obtained directly from microscopic models. The development of such methods is
still in its infancy, and it is intimately related to the issues of emergent simplicity and
complexity discussed in Chapter 8.

Abstract mathematical models that describe the deterministic dynamics for var-
ious systems, whether represented in the form of differential equations or determin-
istic cellular automata (CA, Section 1.5), enable computer simulation and study
through integration of the differential e quations or through simulation of the CA.
The effects of external influences, not incorporated in the parameters of the model,
may be maodeled using stochastic variables (Section 1.2).Such models, whether of flu-
ids or of galaxies, describe the macroscopic behavior of physical systems by assuming
that the microscopic (e.g., molecular) motion is irrelevant to the macroscopic

(1.7.2)



188 Introduction and Preliminaries

phenomena being described. The microscopic behavior is summarized by parameters
such as density, elasticity or viscosity. Such model simulations enable us to describe
macroscopic phenomena on a large range of spatial and temporal scales.

1.7.2 Monte Carlo simulations

In our investigations of various systems, we are often interested in average quantities
rather than a complete description of the dynamics. This was particularly apparent in
Section 1.3, when equilibrium thermodynamic properties of systems were discussed.
The ergodic theorem (Section 1.3.5) suggested that we can use an ensemble average
instead of the space-time average of an experiment. The ensemble average enables us
to treat problems analytically, when we cannot integrate the dynamics explicitly. For
example, we studied equilibrium properties of the Ising model in Section 1.6 without
reference to its dynamics. e were able to obtain estimates of its free energy, energy
and magnetization by averaging various quantities using ensemble probabilities.

However, we also found that there were quite severe limits to our analytic capa-
bilities even for the simplest Ising model. It was necessary to use the mean field ap-
proximation to obtain results analytically. The essential difficulty that we face in per-
forming ensemble averages for complex systems,and even for the simple Ising model,
is that the averages have to be performed over the many possible states of the system.
For as few as one hundred spins,the number of possible states of the system—zloo—
is so large that we cannot average over all of the possible states. This suggests that we
consider approximate numerical techniques for studying the ensemble averages. In
order to perform the averages without summing over all the states, we must find some
way to select a representative sample of the possible states.

Monte Carlo simulations were developed to enable numerical averages to be per-
formed efficiently. They play a central role in the use of computers in science. Monte
Carlo can be thought of as a general way of estimating averages by selecting a limited
sample of states of the system over which the averages are performed. In order to opti-
mize convergence of the average, we take advantage of information that is known about
the system to select the limited sample. As we will see, under some circumstances,the
sequence of states selected in a Monte Carlo simulation may itself be used as a model of
the dynamics of a system. Then,if we are careful about designing the Monte Carlo, we
can separate the time scales of a system by treating the fast degrees of freedom using an
ensemble average and still treat explicitly the dynamic degrees of freedom.

To introduce the concept of Monte Carlo simulation,we consider finding the av-
erage of a function f (), where the system variable s has the probability P(s). For sim-
plicity, we take s to be a single real variable in the range [- 1,+1]. The average can be
approximated by a sum over equally spaced valuess;:

1 M
<f()> :c‘j(s)P(s)ds »é_ f ;)P (5)As = % é_ f(n/M)P(n/M) (1.7.3)
-1 Sj n=-M

This formula works well if the functions f (s) and P(s) are reasonably smooth and uni-
form in magnitude. However, when they are not smooth,this sum can be a very inef-
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ficient way to perform the integral. Consider this integral when P(s) is a Gaussian,and
f (s) is a constant:

P 18 (/M) 1267
<fE)>uQ ds »V ae (1.7.4)
-1 n=-M

A plot of the integrand in Fig. 1.7.1 shows that for o<<1 we are performing the inte-
gral by summing many values that are essentially zero. These values contribute noth-
ing to the result and require as much computational effort as the comparatively few
points that do contribute to the integral near s = 0, where the function is large. The
few points near s = 0 will not give a very accurate estimate of the integral. Thus,most
of the computational work is being wasted and the integral is not accurately evalu-
ated. If we want to improve the accuracy of the sum, we have to increase the value of
M. This means we will be summing many more points that are almost zero.

To avoid this problem, we would like to focus our attention on the region in
Eq. (1.7.4) where the integrand is large. This can be done by changing how we select
the points where we perform the average. Instead of picking the points at equal inter-
vals along the line, we pick them with a probability given by P(s). This is the same as
saying that we have an ensemble representing the system with the state variable s.
Then we perform the ensemble average:

N
<16)> =g EPEs = & 16) 175)

sP(s)

1 -S 0 s 1

Figure 1.7.1 Plot of the Gaussian distribution illustrating that an integral that is performed
by uniform sampling will use a lot of points to represent regions where the Gaussian is van-
ishingly small. The problem gets worse as o becomes smaller compared to the region over
which the integral must be performed. It is much worse in typical multidimensional averages
where the Boltzmann probability is used. Monte Carlo simulations make such integrals com-
putationally feasible by sampling the integrand in regions of high probability. O
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The latter expression represents the sum over N values of s, where these values have
the probability distribution P(s). We have implicitly assumed that the function f () is
relatively smooth compared to P(s). In Eg. (1.7.5) we have replaced the integral with
a sum over an ensemble. The problem we now face is to obtain the members of the
ensemble with probability P(s). To do this we will invert the ergodic theorem of
Section 1.3.5.

Since Section 1.3 we have described an ensemble as representing a system, if the
dynamics of the system satisfied the ergodic theorem. We now turn this around and
say that the ensemble sum in Eq.(1.7.5) can be represented by any dynamics that sat-
isfies the ergodic theorem, and which has as its equilibrium probability P(s). To do
this we introduce a time variable t that, for our current purposes, just indicates the
order of terms in the sum we are performing. The value of s appearing in thetth term
would be s(t). We then rewrite the ergodic theorem by considering the time average
as an approximation to the ensemble average (rather than the opposite):

.
<f@)> :Tié f (s5(t)) (1.7.6)
t=1

The problem remains to sequentially generate the states s(t), or, in other words, to
specify the dynamics of the system. If we know the probability P(s),and s is a few bi-
nary or real variables,this may be done directly with the assistance of a random num-
ber generator (Question 1.7.1). However, often the system coordinate s represents a
large number of variables.A more serious problem is that for models of physical sys-
tems, we generally don’t know the probability distribution explicitly.

Thermodynamic systems are described by the Boltzmann probability
(Section 1.3):

1.
P({x, p}) = =~ EbPI/KT
g (1.7.7)
7 = § o EWePDAT
x.p}

where {x,p} are the microscopic coordinates of the system,and E({x,p}) is the micro-
scopic energy. An example of a quantity we might want to calculate would be the av-
erage energy:

1o - /K
U==a E(k,ppe "EPVT (17.8)
z
x.p}
In many cases,as discussed in Section 1.4, the quantity that we would like to find the
average of depends only on the position of particles and not on their momenta. We
then write more generally

P(S): LB-F(S)/kT
Zs

Z, =8 e FON (1.7.9)

S
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where we use the system state variable s to represent the relevant coordinates of the
system. We make no assumption about the dimensionality of the coordinate s which
may, for example, be the coordinates {x} of all of the particles. F(5) is the free energy
of the set of states associated with the coordinate s. A precise definition, which indi-
cates both the variable s and its value s ¢ is given in Eq. (1.4.27):

Fo69=-KT IN(Q 850 = ®PDAT)

o (1.7.10)

We note that Eq. (1.7.9) is often written using the notation E(s) (the energy of s) in-
stead of F(s) (the free energy of s),though F(s) is more correct. An average we might
calculate, of a quantity Q(s), would be:

1 _
U= Eé Q) " (17.12)
S

where Q(S) is assumed to depend only on the variable s and not directly on {x,p}.

The problem with the evaluation of either Eq. (1.7.8) or Eqg. (1.7.11) is that the
Boltzmann probability does not explicitly give us the probability of a particular state.
In order to find the actual probability, we need to find the partition function Z. To cal-
culate Z we need to perform a sum over all states of the system, which is computa-
tionally impossible. Indeed,if we were able to calculate Z, then,as discussed in Section
1.3, we would know the free energy and all the other thermodynamic properties of the
system. So a prescription that relies upon knowing the actual value of the probability
doesn’t help us. However, it turns out that we don’'t need to know the actual proba-
bility in order to construct a dynamics for the system, only the relative probabilities
of particular states. The relative probability of two states, P(s) / P(s9),is directly given
by the Boltzmann probability in terms of their relative energy:

P(s) / P(sq) = e FO-FCOAT (1.7.12)

This is the key to Monte Carlo simulations. It is also a natural result, since a system
that is evolving in time does not know global properties that relate to all of its possi-
ble states. It only knows properties that are related to the energy it has,and how this
energy changes with its configuration. In classical mechanics, the change of energy
with configuration would be the force experienced by a particle.

Our task is to describe a dynamics that generates a sequence of states of a system
s(t) with the proper probability distribution, P(s). The classical (Newtonian) ap-
proach to dynamics implies that a deterministic dynamics exists which is responsible
for generating the sequence of states of a physical system. In order to generate the
equilibrium ensemble, however, there must be contact with a thermal reservoir.
Energy transfer between the system and the reservoir introduces an external interac-
tion that disrupts the system’s deterministic dynamics.

We will make our task simpler by allowing ourselves to consider a stochastic
Markov chain (Section 1.2) as the dynamics of the system. The Markov chain is de-
scribed by the probability P,(s¢s®) of the system in a state s = s@making a transition
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to the state s =s¢ A particular sequence s(t) is generated by starting from one config-
uration and choosing its successors using the transition probabilities.

The general formulation of a Markov chain includes the classical Newtonian dy-
namics and can also incorporate the effects of a thermal reservoir. However, it is gen-
erally convenient and useful to use a Monte Carlo simulation to evaluate averages that
do not depend on the momenta,as in Eq.(1.7.11). There are some drawbacks to this
approach. It limits the properties of the system whose averages can be evaluated.
Systems where interactions between par ticles depend on their momenta cannot be
easily included. Moreover, averages of quantities that depend on both the momentum
and the position of particles cannot be performed. However, if the energy separates
into potential and kinetic energies as follows:

E({p) =V () +@ pi'/2m (17.13)

then averages over all quantities that just depend on momenta (such as the kinetic en-
ergy) can be evaluated directly without need for numerical computation. These aver-
ages are the same as those of an ideal gas. Monte Carlo simulations can then be used
to perform the average over quantities that depend only upon position {x}, or more
generally, on position-related variabless. Thus,in the remainder of this section we fo-
cus on describing Markov chains for systems described only by position-related vari-
abless.

As described in Section 1.2 we can think about the Markov dynamics as a dy-
namics of the probability rather than the dynamics of a system. Then the dynamics
are specified by

Py(s 0t) = & Py (s%ls WP,(s Gt - 1) (1.7.14)

s¢
In order for the stochastic dynamics to represent the ensemble, we must have the time
average over the probability distribution P(s¢t) equal to the ensemble probability.
This is true for a long enough time average if the probability converges to the ensem-
ble probability distribution, which is a steady-state distribution of the Markov chain:

P 9=Py(s8¥)= & P,(sUs B, &¥) (1.7.15)
s¢
Thermodynamics and stochastic Markov chains meet when we construct the Markov
chain so that the Boltzmann probability, Eqg. (1.7.9), is the limiting distribution.

We now make use of the Perron-Frobenius theorem (see Section 1.7.4 below),
which says that a Markov chain governed by a set of transition probabilities Py(s¢s®
converges to a unique limiting probability distribution as long as it is irreducible and
acyclic. Irreducible means that there exist possible paths between each state and all
other possible states of the system. This does not mean that all states of the system are
connected by nonzero transition probabilities. There can be transition probabilities
that are zero. However, it must be impossible to separate the states into two sets for
which there are no transitions from one set to the other. Acyclic means that the sys-
tem is not ballistic—the states are not organized by the transition matrix into a ring
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with a deterministic flow around it. There may be currents, but they must not be de-
terministic. It is sufficient for there to be a single state which has a nonzero probabil-
ity of making a transition to itself for this condition to be satisfied,thus it is often as-
sumed and unstated.

We can now summarize the problem of identifying the desired Markov chain.We
must construct a matrix Py(sds®) that satisfies three properties.First,it must be an al-
lowable transition matrix. This means that it must be nonnegative, P,(s&s¢2 0, and
satisfy the normalization condition (Eq (1.2.4)):

a PHs)=1 (1.7.16)

s@

Second,it must have the desired probability distribution, Eq.(1.7.9),as a fixed point.
Third, it must not be reducible—it is possible to construct a path between any two
states of the system.

These conditions are sufficient to guarantee that a long enough Markov chain
will be a good approximation to the desired ensemble. There is no guarantee that the
convergence will be rapid. As we have seen in Section 1.4,in the case of the glass tran-
sition,the ergodic theorem may be violated on all practical time scales for systems that
are following a particular dynamics. This applies to realistic or artificial dynamics. In
general such violations of the ergodic theorem, or even just slow convergence of av-
erages, are due to energy barriers or entropy “bottlenecks” that prevent the system
from reaching all possible configurations of the system in any reasonable time. Such
obstacles must be determined for each system that is studied, and are sometimes but
not always apparent. It should be understood that different dynamics will satisfy the
conditions of the ergodic theorem over very different time scales. The equivalence of
results of an average performed using two distinct dynamics is only guaranteed ifthey
are both simulated for long enough so that each satisfies the ergodic theorem.

Our discussion here also gives some additional insights into the conditions un-
der which the ergodic theorem applies to the actual dynamics of physical systems. We
note that any proof of the applicability of the ergodic theorem to a real system re-
quires considering the actual dynamics rather than a model stochastic process. When
the ergodic theorem does not apply to the actual dynamics, then the use of a Monte
Carlo simulation for performing an average must be considered carefully. It will not
give the same results if it satisfies the ergodic theorem while the real system does not.

We are still faced with the task of selecting values for the transition probabilities
P,(s¢sd® that satisfy the three requirements given above. We can simplify our search
for transition probabilities P,(s¢s®) for use in Monte Carlo simulations by imposing
the additional constraint of microscopic reversibility, also known as detailed balance:

Py(s®sQP(sG¥) = Py(sds®) Py(s&¥¥ ) (1.7.17)

This equation implies that the transition currents between two states of the system are
equal and therefore cancel in the steady state, Eq.(1.7.15). It corresponds to true equi-
librium,as would be present in a physical system. Detailed balance implies the steady-
state condition, but is not required by it.Steady state can also include currents that do
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not change in time. We can prove that Eq.(1.7.17) implies Eq. (1.7.15) by summing
over s¢
A PGEHsOPEE¥)=a PSYsHP (H¥)=P(c ®¥) (1.7.18)
sC sC
We do not yet have an explicit prescription for Py(sds®). There is still a tremen-

dous flexibility in determining the transition probabilities.One prescription that en-
ables direct implementation, called Metropolis Monte Carlo, is:

PcYsB=AiEYsY PsO/P(s®31 s sd

P.cYs®=AGCYsHP, 9/ P,c® P,GH/P, (W<l s sd

PWs®=1- § P.(UsY (1.7.19)
shgt

These expressions specify the transition probability P (s¢s® in terms of a symmetric
stochastic matrix A(s¢s®. A(sds®) is independent of the limiting equilibrium distrib-
ution. The constraint associated with the limiting distribution has been incorporated
explicitly into Eqg. (1.7.19). It satisfies detailed balance by direct substitution in
Eq. (1.7.17), since for P,(s®3 P,(s&) (similarly for the opposite) we have

P, ®@sYP, ) =A(®sOP, (59 =A(UsBP, O
= (MY BP, s O/Py s )Py (s B = P, Hs BP, (s )

The symmetry of the matrix A(s¢s® is essential to the proof of detailed balance. One
must often be careful in the design of specific algorithms to ensure this property. It is
also important to note that the limiting probability appears in Eq. (1.7.19) only in the
form of a ratio P,(5¢) /P,(s&) which can be given directly by the Boltzmann distribution.

To understand Metropolis Monte Carlo, it is helpful to describe a few examples.
We first describe the movement of the system in terms of the underlying stochastic
process specified by A(s¢s@), which is independent of the limiting distribution. This
means that the limiting distribution of the underlying process is uniform over the
whole space of possible states.

A standard way to choose the matrix A(s¢s®) is to set it to be constant for a few
states s¢that are near s& For example, the simplest random walk is such a case, since
it allows a probability of 1/2 for the system to move to the right and to the left. If s is
a continuous variable, we could choose a distance ry and allow the walker to take a step
anywhere within the distance ry with equal probability. Both the discrete and contin-
uous random walk have d-dimensional analogs or, for a system of interacting parti-
cles, N-dimensional analogs. When there is more than one dimension, we can choose
to move in all dimensions simultaneously. Alternatively, we can choose to move in
only one of the dimensions in each step. For an Ising model (Section 1.6), we could
allow equal probability for any one of the spins to flip.

Once we have specified the underlying stochastic process, we generate the se-
guence of Monte Carlo steps by applying it. However, we must modify the probabili-
ties according to Eq. (1.7.19). This takes the form of choosing a step, but sometimes
rejecting it rather than taking it. When a step is rejected,the system does not change

(1.7.20)
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its state. This gives rise to the third equation in Eq.(1.7.19) where the system does not
move. Specifically, we can implement the Monte Carlo process according to the fol-
lowing prescription:

1. Pick one of the possible moves allowed by the underlying process. The selection
is random from all of the possible moves. This guarantees that we are selecting it
with the underlying probability A(s¢sd.

2. Calculate the ratio of probabilities between the location we are going to, com-
pared to the location we are coming from

P(s8) / Py(sq) =" ECO-ECO/T (1.7.21)

If this ratio of probabilities is greater than one, which means the energy is lower where
we are going, the step is accepted. This gives the probability for the process to occur
as M(sdsd), which agrees with the first line of Eq.(1.7.19). However, if this ratio is less
than one, we accept it with a probability given by the ratio. For example,if the ratio is
0.6, we accept the move 60% of the time. If the move is rejected,the system stays in its
original location. Thus,if the energy where we are trying to go is higher, we do not ac-
cept it all the time, only some of the time. The likelihood that we accept it decreases
the higher the energy is.

The Metropolis Monte Carlo prescription makes logical sense. It tends to move
the system to regions of lower energy. This must be the case in order for the final dis-
tribution to satisfy the Boltzmann probability. However, it also allows the system to
climb up in energy so that it can reach, with a lower probability, states of higher en-
ergy. The ability to climb in energy also enables the system to get over barriers such as
the one in the two-state system in Section 1.4.

For the Ising model, we can see that the Monte Carlo dynamics that uses all single
spin flips as its underlying stochastic process is not the same as the Glauber dynamics
(Section 1.6.7), but is similar. Both begin by selecting a particular spin. After selection
of the spin, the Monte Carlo will set the spin to be the opposite with a probability:

min(1,e ~ED-EC)7KTy (1.7.22)

This means that if the energy is lower for the spin to flip, it is flipped. If it is higher, it
may still flip with the indicated probability. This is different from the Glauber pre-
scription, which sets the selected spin to up or bowN according to its equilibrium
probability (Eq. (1.6.61)-Eqg. (1.6.63)). The difference between the two schemes can
be shown by plotting the probability of a selected spin being up as a function of the
energy difference between up and bown, E, = E(1) — E(-1) (Fig. 1.7.2). The Glauber
dynamics prescription is independent of the starting value of the spin. The Metropolis
Monte Carlo prescription is not. The latter causes more changes, since the spin is
more likely to flip. Unlike the Monte Carlo prescription, the Glauber dynamics ex-
plicitly requires knowledge of the probabilities themselves. For a single spin flip in an
Ising system this is fine, because there are only two possible states and the probabili-
ties depend only on E... However, this is difficult to generalize when a system has many
more possible states.
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Ps(1;1)
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Figure 1.7.2 lllustration of the difference between Metropolis Monte Carlo and Glauber dy-
namics for the update of a spin in an Ising model. The plots show the probability P¢(1;t) of
a spin being up at time t. The Glauber dynamics probability does not depend on the starting
value of the spin. There are two curves for the Monte Carlo probability, for s(t - 1) =1 and
s(t- 1)=-1. O

There is a way to generalize further the use of Monte Carlo by recognizing that
we do not even have to use the correct equilibrium probability distribution when gen-
erating the time series. The generalized expression for an arbitrary probability distri-
bution P &s) is:

f)PE) 1 & fG)PE)
<f@)>e= P §s)ds = — —_—
) >p ) OW &) Ns%s) P ©)

The subscript P(s) indicates that the average assumes that s has the probability dis-

tribution P(s) rather than P s). This equation generalizes Eq. (1.7.5). The prob-

lem with this expression is that it requires that we know explicitly the probabilities

P(s) and P &s). This can be remedied. We illustrate for a specific case, where we use

the Boltzmann distribution at one temperature to evaluate the average at another
temperature:

(1.7.23)

N .. N
<f(s)>P(s):i é_ M :aq_q;(_)i é f(s)e-E(s)(l/kT-l/kTg (1.7.24)
N $Ps) PE) &Z gN 5P 1)

The ratio of partition functions can be directly evaluated as an average:
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Thus we have the expression:

N
<f(s)>P(s)= é f(s)e—E(s)(llkT-l/kTQ/ ae -EG)(VKT -1KT ¢ (1726)
sP Q) sP Q)

This means that we can obtain the average at various temperatures using only a sin-
gle Monte Carlo simulation. However, the whole point of using the ensemble aver-
age is to ensure that the average converges rapidly. This may not happen if the en-
semble temperature T¢is much different from the temperature T. On the other
hand, there are circumstances where the function f(s) may have an energy depen-
dence that makes it better to perform the average using an ensemble that is not the
equilibrium ensemble.

The approach of Monte Carlo simulations to the study of statistical averages en-
sures that we do not have to be concerned that the dynamics we are using for the sys-
tem is a real dynamics. The result is the same for a broad class of artificial dynamics.
The generality provides a great flexibility; however, this is also a limitation. We can-
not use the Monte Carlo dynamics to study dynamics. We can only use it to perform
statistical averages. Must we be resigned to this limitation? The answer, at least in part,
is no. The reason is rooted in the central limit theorem. For example,the implemen-
tations of Metropolis Monte Carlo and the Glauber dynamics are quite different. We
know that in the limit of long enough times, the distribution of configurations gen-
erated by both is the same. We expect that since each of them flips only one spin,if we
are interested in changes in many spins,the two should give comparable results in the
sense of the central limit theorem. This means that aside from an overall scale factor,
the time evolution of the distribution of probabilities for long times is the same. Since
we already know that the limiting distribution is the same in both cases, we are as-
serting that the approach to this limiting distribution, which is the long time dynam-
ics, is the same.

The claim that for a large number of steps all dynamics is the same is not true
about all possible Monte Carlo dynamics. If we allow all of the spins in an Ising model
to change their values in one step of the underlying dynamics A(sdsd), then this step
would be equivalent to many steps in a dynamics that allows only one spin to flip at a
time. In order for two different dynamics to give the same results,there are two types
of constraints that are necessary. First, both must have similar kinds of allowed steps.
Specifically, we define steps to the naturally proximate configurations as local moves.
As long as the Monte Carlo allows only local moves, the long time dynamics should
be the same. Such dynamics correspond to a local diffusion in the space of possible
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configurations of the system. More generally, two different dynamics should be the
same if configuration changes that require many steps in one also require many steps
in the other. The second type of constraint is related to symmetries of the problem. A
lack of bias in the random walk was necessary to guarantee that the Gaussian distrib-
ution resulted from a generalized random walk in Section 1.2. For systems with more
than one dimension, we must also ensure that there is no relative bias between mo-
tion in different directions.

We can think about Monte Carlo dynamics as diffusive dynamics of a system that
interacts frequently with a reservoir. There are properties of more realistic dynamics
that are not reproduced by such configuration Monte Carlo simulations. Correlations
between steps are not incorporated because of the assumptions underlying Mar kov
chains. This rules out ballistic motion,and exact or approximate momentum conser-
vation. Momentum conservation can be included if both position and momentum
are included as system coordinates. The method called Brownian dynamics incorpo-
rates both ballistic and diffusive dynamics in the same simulation. However, if corre-
lations in the dynamics of a system have a shorter range than the motion we are in-
terested in, momentum conservation may not matter to results that are of interest,
and conventional Monte Carlo simulations can be used directly.

In summary, Monte Carlo simulations are designed to reproduce an ensemble
rather than the dynamics of a particular system. As such,they are ideally suited to in-
vestigating the equilibrium properties of thermodynamic systems. However, Monte
Carlo dynamics with local moves often mimic the dynamics of real systems. Thus,
Monte Carlo simulations may be used to investigate the dynamics of systems when
they are appropriately designed. This property will be used in Chapter 5 to simulate
the dynamics of long polymers.

There is a flip side to the design of Monte Carlo dynamics to simulate actual dy-
namics. If our objective is the traditional objective of a Monte Carlo simulation, of
obtaining an ensemble average, then the ability to simulate dynamics may not be an
advantage. In some systems, the real dynamics is slow and we would prefer to speed
up the process. This can often be done by knowingly introducing nonlocal moves that
displace the state of the system by large distances in the space of conformations. Such
nonlocal Monte Carlo dynamics have been designed for various systems. In particu-
lar, both local and nonlocal Monte Carlo dynamics for the problem of polymer dy-
namics will be described in Chapter 5.

uestion 1.7.1 In order to perform Monte Carlo simulations, we must

be able to choose steps at random and accept or reject steps with a cer-
tain probability. These operations require the availability of random num-
bers. We might think of the source of these random numbers as a thermal
reservoir. Computers are specifically deigned to be completely deterministic.
This means that inherently there is no randomness in their operation. To ob-
tain random numbers in a computer simulation requires a deterministic al-
gorithm that generates a sequence of numbers that look random but are not
random. Such sequences are called pseudo-random numbers. Random



Computer simulations

numbers should not be correlated to each other. However, using pseudo-
random numbers, if we start a program over again we must get exactly the
same sequence of numbers. The difficulties associated with the generation of
random numbers are central to performing Monte Carlo computer simula-
tions. If we assume that we have random numbers, and they are not really
uncorrelated, then our results may very well be incorrect. Nevertheless,
pseudo-random numbers often give results that are consistent with those ex-
pected from random numbers.

There are a variety of techniques to generate pseudo-random numbers.
Many of these pseudo-random number generators are designed to provide,
with equal “probability,” an integer between 0 and the maximal integer pos-
sible. The maximum integer used by a particular routine on a particular ma-
chine should be checked before using it in a simulation. Some use a standard
short integer which is represented by 16 bits (2 bytes).One bit represents the
unused sign of the integer. This leaves 15 bits for the magnitude of the num-
ber. The pseudo-random number thus ranges up to 2*° - 1 =32767. An ex-
ample of a routine that provides pseudo-random integers is the subroutine
rand() inthe ANSI C library, which is executed using a line such as:

k=rand(); (1.7.27)

The following three questions discuss how to use such a pseudo-random
number generator. Assume that it provides a standard short integer.

1. Explain how to use a pseudo-random number generator to choose a
move in a Metropolis Monte Carlo simulation, Eq. (1.7.19).

2. Explain how to use a pseudo-random number generator to acceptor re-
ject a move in a Metropolis Monte Carlo simulation, Eqg. (1.7.19).

3. Explain how to use a pseudo-random number generator to provide val-
ues of x with a probability P(x) for x in the interval [0,1]. Hint: Use two
pseudo-random numbers every step.

Solution 1.7.1

1. Given the necessity of choosing one out of M possible moves, we create
a one-to-one mapping between the M moves and the integers {0,.. .,
M - 1} If M is smaller than 2 we can use the value of k =r and() to
determine which move is taken next. If k is larger than M - 1, we don’t
make any move. If M is much smaller than 2*° then we can use only
some of the bits of k. This avoids making many unused callstor and() .
Fewer bits can be obtained using a modulo operation. For example, if
M =10 we might use k modulo 16. We could also ignore values above
32759,and use k modulo 10. This also causes each move to occur with
equal frequency. However, a standard word of caution about using only
a few bits is that we shouldn’t use the lowest order bits (i.e., the units,
twos and fours bits), because they tend to be more correlated than the
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higher order bits. Thus it may be best first to divide k by a small num-
ber, like 8 (or equivalently to shift the bits to the right),if it is desired to
use fewer bits. If M is larger than 2™ it is necessary to use more than one
calltor and() (or arandom number generator that provides a 4-byte
integer) so that all possible moves are accounted for.

2. Given the necessity of determining whether to accept a move with the
probability P, we compare 2" P with a number given by k=rand() .
If the former is bigger we accept the move, and if it is smaller we reject
the move.

3. One way to do this is to generate two random numbers r; and r,.
Dividing both by 32767 (or 2'°), we use the first random number to be
the location in the interval x =r;/32767. However, we use this location
only if the second random number r, /32767 is smaller than P(x). If the
random number is not used, we generate two more and proceed. This
means that we will use the position x with a probability P(x) as desired.
Because it is necessary to generate many random numbers that are re-
jected, this method for generating numbers for use in performing the in-
tegral Eq. (1.7.3) is only useful if evaluations of the function f(x) are
much more costly than random number generation. O

uestion 1.7.2 To compare the errors that arise from conventional nu-

merical integration and Monte Carlo sampling, we return to Eq.(1.7.4)
and Eq. (1.7.5) in this and the following question. We choose two integrals
that can be evaluated analytically and for which the errors can also be eval-
uated analytically.

Evaluate two examples of the integral & (x)f(x)dx over the interval
x 1 [1,1]. For the first example (1) take f(x) = 1, and for the second (2)
f(x) =x. In both cases assume the probability distribution is an exponential

é u
P(X)=Ae ™ = gmtp ™ (1.7.28)
ée”-e "0

where the normalization constant A is given by the expression in square
brackets.

Calculate the two integrals exactly (analytically). Then evaluate approx-
imations to the integrals using sums over N equally spaced points,
Eq.(1.7.4). These sums can also be evaluated analytically. To improve the re-
sult of the sum, you can use Simpson’s rule. This modifies Eq.(1.7.4) only by
subtracting 1/2 of the value of the integrand at the first and last points. The
errors in evaluation of the same integral by Monte Carlo simulation are to
be calculated in Question 1.7.3.

Solution 1.7.2

1. The value of the integral of P(x) is unity as required by normalization.
If we use a sum over equally spaced points we would have:
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where we used the temporary definitiona =¢e " »M to obtain
- A (aM+1_ a—M) A (ekeMM -e'h)
AQixe ™ »— =— 1.7.30
a M a-1 M MM _q ( )
Expanding the answer in powers of A/ M gives:
1 A -A A - A A -h
A Gybe A8 e ) T ) M)y,
A 2M M2
-1 (1.7.31)

2
1+ 2 tanh() + 2=+
2M 2M?

The second term can be eliminated by noting that the sum could be
evaluated using Simpson’s rule by subtracting 1/2 of the contribution of
the end points. Then the third term gives an error of A2/2M?. This is the
error in the numerical approximation to the average of f(x) = 1.

. For f(x) = x the exact integral is:

! A d . d & -e
Acgixxe ™ =- A— fyixe” X—-A—e—u
o 7.0 Te n g (13
-1 -1
= - coth(L) +(L/A)
while the sum is:
1 M
A Cylxxe ™ » AZ ane MOIM) = iz 3 na"
o1 M n=-M M n=-M
A d ¥ . A dE"™-a ™
YRR v
M n=-M -
M + -M M+l _-M (1.7.33)
_A (M +Da™ = +Ma )+ Aa@ "-a )
M2 a-1 M2 (@-1)7°
_ A (ekeX/M +e-7») A (eke)\/M) A ek/M(e)\ AMM e-k)
M M g M2etM_1 M2 @™ -1y

With some assistance from Mathematica,the expansion to second order
inAM/Mis:

ro-h Aoy -A A A
e -e e +e A" -e A
N N ) A J AL,
% A M 2 M2 12
11 A
=-1/\ +coth(k)+ —_—t e — (1.7.34)
2M 12 M2
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The first two terms are the correct result. The third term can be seen to
be eliminated using Simpson’s rule. The fourth term is the error. 0

uestion 1.7.3 Estimate the errors in performing the same integrals as in
Question 1.7.2 using a Monte Carlo ensemble sampling with N terms as

in Eq.(1.7.5). It is not necessary to evaluate the integrals to evaluate the errors.
Solution 1.7.3

1. The errors in performing the integral for f(x) = 1 are zero, since the

Monte Carlo sampling would be given by the expression:

1 N
<I>p=— Ql=1 (1.7.35)
sP@s)

One way to think about this result is that Monte Carlo takes advantage
of the normalization of the probability, which the technique of sum-
ming the integrand over equally spaced points cannot do. This knowl-
edge makes this integral trivial, but it is also of use in performing other
integrals.

. To evaluate the error for the integral over f(x) = x we use an argument

based on the sampling error of different regions of the integral. We
break up the domain [- 1,1] into q regions of size Dx = 2/q. Each region
is assumed to have a significant number of samples. The number of
these samples is approximately given by:

NP (x)Dx (1.7.36)

If this were the exact number of samples as g increased,then the integral
would be exact. However, since we are picking the points at random,
there will be adeviation in the number of these from this ideal value. The
typical deviation, according to the discussion in Section 1.2 of random
walks, is the square root of this number. Thus the error in the sum

N
a f(x (1.7.37)
SP @)
from a particular interval Dx is
(NP(X)Dx)*2 f(x) (1.7.38)

Since this error could have either a positive or negative sign, we must
take the square root of the sum of the squares of the error in each region
to give us the total error:

N
CPOOT (X)- % a fx)l» %Jé NP(x)AX f (x)? »%I\lJc‘jv(x)f(x)2

sP ()

(1.7.39)
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For f(x) =x the integral in the square root is:

et )y = e Moy = g S & "€ ") 2 2c0thGy)
QAe T (x)"dx = Qhe "x “dx Adk2 . = y +1

(1.7.40)
The approach of Monte Carlo is useful when the exponential is rapidly de-
caying. In this case, A >>1, and we keep only the third term and have an error
that is just of magnitude 1/N. Comparing with the sum over equally spaced
points from Question 1.7.2, we see that the error in Monte Carlo is indepen-
dent of A for large A, while it grows for the sum over equally spaced points.
This is the crucial advantage of the Monte Carlo method. However, for a fixed
value of A we also see that the error is more slowly decreasing with N than the
sum over equally spaced points. So when a large number of samples is possi-
ble, the sum over equally spaced points is more rapidly convergent. [

uestion 1.7.4 How would the discrete nature of the integer random
numbers described in Question 1.7.1 affect the ensemble sampling?
Answer qualitatively. Is there a limit to the accuracy of the integral in this case?

Solution 1.7.4 The integer random numbers introduce two additional
sources of error, one due to the sampling interval along the x axis and the
other due to the imperfect approximation of P(x). In the limit of a large
number of samples, each of the possible values along the x axis would be
sampled equally. Thus, the ensemble sum would reduce to a sum of the in-
tegrand over equally spaced points. The number of points is given by the
largest integer used (e.g., 215). This limits the accuracy accordingly. O

1.7.3 Perron-Frobenius theorem

The Perron-Frobenius theorem is tied to our understanding of the ergodic theorem
and the use of Monte Carlo simulations for the representation of ensemble averages.
The theorem only applies to a system with a finite space of possible states. It says that
a transition matrix that is irreducible must ultimately lead to a stable limiting proba-
bility distribution. This distribution is unique, and thus depends only on the transi-
tion matrix and not on the initial conditions. The Perron-Frobenius theorem assumes
an irreducible matrix,so that starting from any state,there is some path by which it is
possible to reach every other state of the system. If this is not the case,then the theo-
rem can be applied to each subset of states whose transition matrix is irreducible.

In a more general form than we will discuss,the Perron-Frobenius theorem deals
with the effect of matrix multiplication when all of the elements of a matrix are pos-
itive. We will consider it only for the case of a transition matrix in a Markov chain,
which also satisfies the normalization condition, Eq. (1.7.16). In this case, the proof
of the Perron-Frobenius theorem follows from the stattment that there cannot be any
eigenvalues of the transition matrix that are larger than one. Otherwise there would
be a vector that would increase everywhere upon matrix multiplication. This is not
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possible, because probability is conserved. Thus if the probability increases in one
place it must decrease someplace else, and tend toward the limiting distribution.

A difficulty in the proof of the theorem arises from dealing with the case in which
there are deterministic currents through the system: e.g., ballistic motion in a circu-
lar path. An example for a two-state system would be

P(1j1) =0 P(1]-1) =1

(1.7.41)
P(-11)=1P(-1}-1)=0

In this case, a system in the state s = +1, goes into s =- 1, and a system in the state
s =-1goes into s = +1. The limiting behavior of this Markov chain is of two proba-
bilities that alternate in position without ever settling down into a limiting distribu-
tion. An example with three states would be

PAL) =0 PAR)=1 P@]3)=1
PRIL)=.5 P(2R)=0 P(23)=0 (1.7.42)
PB[L)=.5 P(32)=0 P(33)=0

Half of the systems with s = 1 make transitions to s = 2 and half to s = 3. All systems
with s =2 and s = 3 make transitions to s = 1. In this case there is also a cyclical be-
havior that does not disappear over time. These examples are special cases, and the
proof shows that they are special. It is sufficient, for example, for there to be a single
state where there is some possibility of staying in the same state. Once this is true,
these examples of cyclic currents do not apply and the system will settle down into a
limiting distribution.

We will prove the Perron-Frobenius theorem in a few steps enumerated below.
The proof is provided for completeness and reference, and can be skipped without
significant loss for the purposes of this book. The proof relies upon properties of the
eigenvectors and eigenvalues of the transition matrix. The eigenvectors need not al-
ways be positive, real or satisfy the normalization condition that is usually applied to
probability distributions, P(s). Thus we use v(s) to indicate complex vectors that have
a value at every possible state of the system.

Given an irreducible real nonnegative matrix (P(s¢s) 3 0) satisfying

a PGgs)=1 (1.7.43)
sC
we have:
1. Applying P(s¢s) cannot increase the value of all elements of a nonnegative vec-
tor, v(s9 3 0:
el o 0
m (.t n g@as PG4 S)V(S)EE 1 (1.7.44)

To avoid infinities, we can assume that the minimization only includes s¢such that
v(s9t 0.
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Proof : Assume that Eq. (1.7.44) is not true. In this case

A PG 4NGE)>v(69 (1.7.45)
forallv(s® * 0, which implies
a a PGYsVE)>A V9 (17.46)
s¢ s s¢

Using Eq. (1.7.43), the left is the same as the right and the inequality is impossible.
2. The magnitude of eigenvalues of P(sds) is not greater than one.

Proof: Let v(s) be an eigenvector of P(s¢s) with eigenvalue A

é. PG §svE) =rv(s9 (1.7.47)

Then:

a Pegobe)e phesq (L.7.48)

This inequality follows because each term in the sum on the left has been made pos-
itive. If all terms started with the same phase, then equality holds. Otherwise, in-
equality holds. Comparing Eq. (1.7.48) with Eq. (1.7.44), we see that |A| £ 1.

If [A] = 1,then equality must hold in Eq.(1.7.48), and this implies that |v(s)], the
vector whose elements are the magnitudes of v(s),is an eigenvector with eigenvalue 1.
Steps 3-5 show that there is one such vector which is strictly positive (greater than
zero) everywhere.

3. P(s¢s) has an eigenvector with eigenvalue A = 1. We use the notation v, (s) for this
vector.

Proof: The existence of such an eigenvector follows from the existence of an eigen-
vector of the transpose matrix with eigenvalue A = 1. Eq.(1.7.43) implies that the vec-
torv(s) =1 (one everywhere) is an eigenvector of the transpose matrix with eigenvalue
A = 1. Thus v,(s) exists, and by step 2 we can take it to be real and nonnegative, v;(s)
3 0. We can, however, assume more, as the following shows.

4. An eigenvector of P(s¢s) with eigenvalue 1 must be strictly positive, v,(s) > 0.

Proof : Define a new Markov chain given by the transition matrix

Q(sds) = (P(ss) + .49 / 2 (1.7.49)

Applying Q(s¢s) N - 1 times to any vector v,;(s) 3 0 must yield a vector that is strictly
positive. This follows because P(sds) is irreducible. Starting with unit probability at
any one value of s, after N - 1 steps we will move some probability everywhere. Also,
by the construction of Q(s¢s), any s which has a nonzero probability at one time will
continue to have a nonzero probability at all later times. By linear superposition,this
applies to any initial probability distribution. It also applies to any unnormalized vec-
tor v4(s) @ 0. Moreover, if v4(S) is an eigenvector of P(s¢s) with eigenvalue one,then it
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is also an eigenvector of Q(s¢s) with the same eigenvalue. Since applying Q(s¢s) to
v;(S) changes nothing, applying it N - 1 times also changes nothing. We have just
proven that v,(s) must be strictly positive.

5. There is only one linearly independent eigenvector of P(s¢s) with eigenvalue A = 1.

Proof : Assume there are two such eigenvectors: v;(s) and v,(s). Then we can make a
linear combination c,v,(s) +¢,v,(S),s0 that at least one of the elements is zero and oth-
ers are positive. This linear combination is also an eigenvector of P(s¢s) with eigen-
value A = 1, which violates step 4. Thus there is exactly one eigenvector of P(s¢s) with
eigenvalue A = 1, vy(s):

a P Gsv(©=w(9 (1.7.50)

6. Either P(s4s) has only one eigenvalue with |A| = 1 (in which case A = 1), or it can
be written as a cyclical flow.

Proof: Steps 2 and 5 imply that all eigenvectors of P(s¢s) with eigenvalues A satisfying
[A| = 1 can be written as:

vi(s) = Dis)vs(s) =€ "y (s) (1.7.51)

As indicated, D; (s) is a vector with elements of magnitude one, |D; (s)] = 1. We can
write

a PG 49D, (Vi) =1Di (v, 59 (L752)

There cannot be any terms in the sum on the left of Eq.(1.7.52) that add terms of dif-
ferent phase. If there were, then we would have a smaller magnitude than adding the
absolute values, which would not agree with Eq.(1.7.50). Thus we can assign all of the
elements of D;(s) into groups that have the same phase. P(s¢s) cannot allow transi-
tions to occur from any two of these groups into the same group. Since P(sgs) is irre-
ducible, the only remaining possibility is that the different groups are connected in a
ring with the first mapped onto the second, and the second mapped onto the third,
and so on until we return to the first group. In particular, if there are any transitions
between a site and itself this would violate the requirements and we could have no
complex eigenvalues.

7. A Markov chain governed by an irreducible transition matrix, which has only one
eigenvector, v4(s) with |A| = 1,has a limiting distribution over long enough times
which is proportional to this eigenvector. Using P'(s¢s) to represent the effect of
applying P(sds) t times, we must prove that:

lim V(s;t)=tlénQ§sl PG Hs)vE) = cvi (59 (1.753)

for v(s) ® 0. The coefficient ¢ depends on the normalization of v(s) and v,(5). If both
are normalized so that the total probability is one, then conservation of probability
implies that ¢ = 1.
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Proof : We write the matrix P(sds) in the Jordan normal form using a similarity trans-
formation. In matrix notation:

P=514s (1.7.54)

J consists of a block diagonal matrix.Each of the block matrices along the diagonal is
of the form

& 1 0 09
¢ LT

N=go 0 s (1.7.55)
0 0 0 Ay

where A is an eigenvalue of P. In this block the only nonzero elements are As on the
diagonal, and 1s just above the diagonal.

Since P' = $™1J'S, we consider Jt, which consists of diagonal blocks N*. We prove
that N'® 0ast® ¥ for+A +<1. This can be shown by evaluating explicitly the ma-
trix elements. The gth element above the diagonal of N' is:

a0

A =
&g

(1.7.56)
which vanishesast® ¥.

Since 1 is an eigenvalue with only one eigenvector, there must be one 1~ 1 block
along the diagonal of J for the eigenvalue 1. Then J'ast ® ¥ has only one nonzero el-
ement which is a 1 on the diagonal. Eq.(1.7.53) follows, because applying the matrix
P" always results in the unique column of $™* that corresponds to the nonzero diago-
nal element of J'. By our assumptions, this column must be proportional to v;(5). This
completes our proof and discussion of the Perron-Frobenius theorem.

1.7.4 Minimization

At low temperatures, a thermodynamic system in equilibrium will be found in its
minimum energy configuration. For this and other reasons,it is often useful to iden-
tify the minimum energy configuration of a system without describing the full en-
semble. There are also many other problems that can be formulated as minimization
or optimization problems.

Minimization problems are often described in a d-dimensional space of contin-
uous variables. When there is only a single valley in the parameter space of the prob-
lem,there are a variety of techniques that can be used to obtain this minimum. They
may be classified into direct search and gradient-based techniques. In this section we
focus on the single-valley problem. In Section 1.7.5 we will discuss what happens
when there is more than one valley.

Direct search techniques involve evaluating the energy at various locations
and closing in on the minimum energy. In one dimension, search techniques can
be very effective. The key to a search is bracketing the minimum energy. Then
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each energy evaluation is used to geometrically shrink the possible domain of the
minimum.

We start in one dimension by looking at the energy at two positions s, and s, that
are near each other. If the left of the two positions s, is higher in energy E(s;) > E(S,),
then the minimum must be to its right. This follows from our assumption that there
is only a single valley—the energy rises monotonically away from the minimum and
therefore cannot be lower than E(s,),anywhere to the left of s;. Evaluating the energy
at a third location s; to the right of s, further restricts the possible locations of the
minimum. If E(S;) is also greater than the middle energy location E(s;) > E(S,), then
the minimum must lie between s, and s;. Thus, we have successfully bracketed the
minimum. Otherwise, we have that E(s3) < E(S,), and the minimum must lie to the
right of s,. In this case we look at the energy at a location s, to the right of s;. This
process is continued until the energy minimum is bracketed. To avoid taking many
steps to the right,the size of the steps to the right can be taken to be an increasing geo-
metric series, or may be based on an extrapolation of the function using the values
that are available.

Once the energy minimum is bracketed, the segment is bisected again and
again to locate the energy minimum. This is an iterative process. We describe a
simple version of this process that can be easily implemented. An iteration begins
with three locations s; <, < s;. The values of the energy at these locations satisfy
E(sy), E(s3) > E(S,). Thus the minimum is between s, and s;. We choose a new lo-
cation s,, which in even stepsiss, = (s; +5,) / 2 and in odd steps iss, = (S, +33)/2.
Then we eliminate either s, or s;. The one that is eliminated is the one next to s, if
E(s,) > E(s,), or the one next to s, if E(S,) < E(s,). The remaining three locations
are relabled to be sy, s,, S5 for the next step. Iterations stop when the distance be-
tween s; and s; is smaller than an error tolerance which is set in advance. More so-
phisticated versions of this algorithm use improved methods for selecting s, that
accelerate the convergence.

In higher-dimension spaces,direct search can be used. However, mapping a mul-
tidimensional energy surface is much more difficult. Moreover, the exact logic that
enables an energy minimum to be bracketed within a particular domain in one di-
mension is not possible in higher-dimension spaces. Thus, techniques that make use
of a gradient of the function are typically used even if the gradient must be numeri-
cally evaluated. The most common gradient-based minimization techniques include
steepest descent, second order and conjugate gradient.

Steepest descent techniques involve taking steps in the direction of the most rapid
descent direction as determined by the gradient of the energy. This is the same as us-
ing a first-order expansion of the energy to determine the direction of motion toward
lower energy. Illustrating first in one dimension, we start from a position s; and write
the expansion as:

dEG)

——| o 5)°) (1.7.57)

1

EG)=E@)+(6-51)
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We now take a step in the direction of the minimum by setting:

CdE(s)
ds

Sp=8- (1.7.58)

1

From the expansion we see that for small enough ¢, E(s,) must be smaller than E(s,). The
problem is to carefully select ¢ so that we do not go too far. If we go too far we may reach
beyond the energy minimum and increase the energy. We also do not want to make such
a small step that many steps will be needed to reach the minimum. We can think of the
sequence of configurations we pick as a time sequence, and the process we use to pick
the next location as an iterative map. Then the minimum energy configuration is a fixed
point of the iterative map given by Eq.(1.7.58). From a point near to the minimum we
can have all of the behaviors described in Section 1.1—stable (converging) and unsta-
ble (diverging), both of these with or without alternation from side to side of the min-
imum.Of particular relevance is the discussion in Question 1.1.12 that suggests how ¢
may be chosen to stabilize the iterative map and obtain rapid convergence.

When s is a multidimensional variable, Eq. (1.7.57) and Eq. (1.7.58) both con-
tinue to apply as long as the derivative is replaced by the gradient:

EG) =EG) + (- 5)- R E(s)Ll +0((s- 39 (1.7.59)

s, =5, - CNLE(S) L (1.7.60)
1

Since the direction opposite to the gradient is the direction in which the energy decreases
most rapidly, this is known as a steepest descent technique. For the multidimensional case
itis more difficult to choose a consistent value of ¢, since the behavior of the function may
not be the same in different directions. The value of ¢ may be chosen “on the fly” by mak-
ing sure that the new energy is smaller than the old. If the current value of ¢ gives a value
E(s,) which is larger than E(s,) then ¢ is reduced. We can improve upon this by looking
along the direction of the gradient and considering the energy to be a function of c:

E(s, - CNE(s) s) (1.7.61)
1
Then ¢ can be chosen by finding the actual minimum in this direction using the search
technique that works well in one dimension.

Gradient techniques work well when different directions in the energy have the
same behavior in the vicinity of the minimum energy. This means that the second de-
rivative in different directions is approximately the same. If the second derivatives are
very different in different directions,then the gradient technique tends to bounce back
and forth perpendicular to the direction in which the second derivative is very small,
without making much progress toward the minimum (Fig. 1.7.3). Improvements of
the gradient technique fall into two classes. One class of techniques makes direct use of
the second derivatives, the other does not. If we expand the energy to second order at
the present best guess for the minimum energy location s; we have

E6)=EGD)+6 - 50 REE)] +6- s R REE), - 5)+0(6- 51)°)

(1.7.62)
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Figure 1.7.3 lllustration of the difficulties in finding a minimum energy by steepest descent
when the second derivative is very different in different directions. The steps tend to oscil-
late and do not make progress toward the minimum along the flat direction. O

Setting the gradient of this expression to zero gives the next approximation for the
minimum energy location s, as:

_ 1 = (";)_1 ~
5, =5, - Eg?\INS E(SLE >NSE(5)|51 (1.7.63)

This, in effect, gives a better description of the value of ¢ for Eq. 1.7.60, which turns
out to be a matrix inversely related to the second-order derivatives. Steps are large in
directions in which the second derivative is small. If the second derivatives are not eas-
ily available, approximate second derivatives are used that may be improved upon as
the minimization is being performed. Because of the need to evaluate the matrix of
second-order derivatives and invert the matrix,this approach is not often convenient.
In addition, the use of second derivatives assumes that the expansion is valid all the
way to the minimum energy. For many minimization problems, this is not valid
enough to be a useful approximation. Fortunately, there is a second approach called
the conjugate gradient technique that often works as well and sometimes better.

Conjugate gradient techniques make use of the gradient but are designed to avoid
the difficulties associated with long narrow wells where the steepest descent tech-
niques result in oscillations. This is done by starting from a steepest descent in the first
step of the minimization. In the second step, the displacement is taken to be along a
direction that does not include the direction taken in the first step. Explicitly, let v; be
the direction taken in the ith step, then the first two directions would be:

Vi =- NSE(S*g
1

(v REE)] ) (1.7.64)
v, =- NsE(Si + V| ——
2 Vq >V1
This ensures that v, is orthogonal to v,. Subsequent directions are made orthogonal
to some number of previous steps. The use of orthogonal directions avoids much of
the problem of bouncing back and forth in the energy well.

Monte Carlo simulation can also be used to find minimum energy configurations
if the simulations are done at zero temperature. A zero temperature Monte Carlo
means that the steps taken always reduce the energy of the system. This approach
works not only for continuous variables, but also for the discrete variables like in the
Ising model. For the Ising model,the zero temperature Monte Carlo described above
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and the zero temperature Glauber dynamics are the same. Every selected spin is placed
in its low energy orientation—aligned with the local effective field.

None of these techniques are suited to finding the minimum energy configuration
ifthere are multiple energy minima, and we do not know if we are located near the cor-
rect minimum energy location. One way to address this problem is to start from vari-
ous initial configurations and to look for the local minimum nearby. By doing this
many times it might be possible to identify the global minimum energy. This works
when there are only a few different energy minima. There are no techniques that guar-
antee finding the global minimum energy for an arbitrary energy function E(5s).
However, by using Monte Carlo simulations thatare notat T =0, a systematic approach
called simulated annealing has been developed to try to identify the global minimum.

1.7.5 Simulated annealing

Simulated annealing was introduced relatively recently as an approach to finding the
global minimum when the energy or other optimization function contains many lo-
cal minima. The approach is based on the physical process of heating a system and
cooling it down slowly. The minimum energy for many simple materials is a crystal.
If a material is heated to a liquid or vapor phase and cooled rapidly, the material does
not crystallize. It solidifies as a glass or amorphous solid. On the other hand, if it is
cooled slowly, crystals may form. If the material is formed out of several different
kinds of atoms, the cooling may also result in phase separation into particular com-
pounds or atomic solids. The separated compounds are lower in energy than a rapidly
cooled mixture.

Simulated annealing works in much the same way. A Monte Carlo simulation is
started at a high temperature. Then the temperature is lowered according to a cooling
schedule until the temperature is so low that no additional movements are likely. If
the procedure is effective,the final energy should be the lowest energy of the simula-
tion. We could also keep track of the energy during the simulation and take the low-
est value, and the configuration at which the lowest value was reached.

In general, simulated annealing improves upon methods that find only a local
minimum energy, such as steepest descent, discussed in the previous section. For
some problems, the improvement is substantial. Even if the minimum energy that is
found is not the absolute minimum in energy of the system, it may be close. For ex-
ample, in problems where there are many configurations that have roughly the same
low energy, simulated annealing may find one of the low-energy configurations.

However, simulated annealing does not work well for all problems,and for some
problems it fails completely. It is also true that annealing of physical materials does
not always result in the lowest energy conformation. Many materials, even when
cooled slowly, result in polycrystalline materials, disordered solids and mixtures.
When it is important for technological reasons to reach the lowest energy state, spe-
cial techniques are often used. For example, the best crystal we know how to make is
silicon. In order to form a good silicon crystal, it is grown using careful nonuniform
cooling. A single crystal can be gradually pulled from a liquid that solidifies only on
the surfaces of the existing crystal. Another technique for forming crystals is growth
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from the vapor phase, where atoms are deposited on a previously formed crystal that
serves as a template for the continuing growth. The difficulties inherent in obtaining
materials in their lowest energy state are also apparent in simulations.

In Section 1.4 we considered the cooling of a two-state system as a model of a glass
transition. We can think about this simulation to give us clues about why both physi-
cal and simulated annealing sometimes fail to find low energy states of the system. \We
saw that using a constant cooling rate leaves some systems stuck in the higher energy
well. When there are many such high energy wells then the system will not be success-
ful in finding a low energy state. The problem becomes more difficult if the height of
the energy barrier between the two wells is much larger than the energy difference be-
tween the upper and lower wells. In this case, at higher temperatures the system does
not care which well it is in. At low temperatures when it would like to be in the lower
energy well, it cannot overcome the barrier. How well the annealing works in finding a
low energy state depends on whether we care about the energy scale characteristic of
the barrier, or characteristic of the energy difference between the two minima.

There is another characteristic of the energy that can help or hurt the effective-
ness of simulated annealing. Consider a system where there are many local minimum
energy states (Fig. 1.7.4). We can think about the effect of high temperatures as plac-
ing the system in one of the many wells of the energy minima. These wells are called
basins of attraction.A system in a particular basin of attraction will go into the min-
imum energy configuration of the basin if we suddenly cool to zero temperature. We

A
E(s)

Figure 1.7.4 Schematic plot of a system energy E(s) as a function of a system coordinate s.
In simulated annealing, the location of a minimum energy is sought by starting from a high
temperature Monte Carlo and cooling the system to a low temperature. At the high tempera-
ture the system has a high kinetic energy and explores all of the possible configurations. As
the temperature is cooled it descends into one of the wells, called basins of attraction, and
cannot escape. Finally, when the temperature is very low it loses all kinetic energy and sits
in the bottom of the well. Minima with larger basins of attraction are more likely to capture
the system. Simulated annealing works best when the lowest-energy minima have the largest
basins of attraction. O
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also can see that the gradual cooling in simulated annealing will result in low energy
states if the size of the basin of attraction increases with the depth of the well. This
means that at high ttmperatures the system is more likely to be in the basin of attrac-
tion of a lower energy minimum. Thus,simulated annealing works best when energy
varies in the space in such a way that deep energy minima also have large basins of at-
traction. This is sometimes but not always true both in physical systems and in math-
ematical optimization problems.

Another way to improve the performance of simulated annealing is to introduce
nonlocal Monte Carlo steps. If we understand the characteristics of the energy, we can
design steps that take us through energy barriers. The problem with this approach is
that if we don't know the energy surface well enough, then moving around in the
space by arbitrary nonlocal steps will result in attempts to move to locations where
the energy is high. These steps will be rejected by the Monte Carlo and the nonlocal
moves will not help. An example where nonlocal Monte Carlo moves can help is treat-
ments of low-energy atomic configurations in solids. Nonlocal steps can allow atoms
to move through each other, switching their relative positions, instead of trying to
move gradually around each other.

Finally, for the success of simulated annealing, it is often necessary to design care-
fully the cooling schedule.Generally, the slower the cooling the more likely the simu-
lation will end up in a low energy state. However, given a finite amount of computer
and human time,it is impossible to allow an arbitrarily slow cooling. Often there are
particular temperatures where the cooling rate is crucial. This happens at phase tran-
sitions, such as at the liquid-to-solid phase boundary. If we know of such a transition,
then we can cool rapidly down to the transition, cool very slowly in its vicinity and
then speed up thereafter. The most difficult problems are those where there are bar-
riers of varying heights leading to a need to cool slowly at all temperatures.

For some problems the cooling rate should be slowed as the temperature be-
comes lower. One way to achieve this is to use a logarithmic cooling schedule. For ex-
ample, we set the temperature T(t) at time step t of the Monte Carlo, to be:

T() =Ty / In(t/ t, +1) (1.7.65)

where t, and T, are parameters that must be chosen for the particular problem. In
Question 1.7.5 we show that for the two-state system,if kT, > (Eg - E;),then the sys-
tem will always relax into its ground state.

uestion 1.7.5: Show that by using a logarithmic cooling schedule, Eq.

(1.7.65), where kT, > (Eg - E;),the two-state system of Section 1.4 al-
ways relaxes into the ground state. To simplify the problem, consider an in-
cremental time Dt during which the temperature is fixed.Show that the sys-
tem will still relax to the equilibrium probability over this incremental time,
even at low temperatures.

Solution 1.7.5: We write the solution of the time evolution during the in-
cremental time Dt from Eq. (1.4.45) as:

P(Lit+Dt)- P(L¥) = (P(Lt) - P(L;¥))e O (1.7.66)
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where P(1;¥) is the equilibrium value of the probability for the temperature
T(1). ©(t)is the relaxation time for the temperatureT(t). In order for relax-
ation to occur we must have that e "*®<<1, equivalently:

t/z(t)>>1 (1.7.67)

We calculate t(t) from Eq. (1.4.44):

1@)=v(E (Es-E1)/KT() e’ (Es-E- 1)/kT(t))

- (Ee EDKT () -y (1.7.68)
>ve =v(thty +))

where we have substituted Eq. (1.7.65) and defined y = (Eg - E;)/KT, We

make the reasonable assumption that we start our annealing at a high tem-

perature where relaxation is not a problem. Then by the time we get to the

low temperatures that are of interest, t >> t,, so:

1/%(t) > 2n(t/ty) " (1.7.69)
and
t/rt)>vtdthy (1.7.70)

For y < 1 the right-hand side increases with time and thus the relaxation im-
proves with time according to Eq. (1.7.67). If relaxation occurs at higher
temperatures, it will continue to occur at all lower temperatures despite the
increasing relaxation time. 0

Information

Ultimately, our ability to quantify complexity (How complex is it?) requires a quan-
tification of information (How much information does it take to describe it?). In this
section, we discuss information. We will also need computation theory described in
Section 1.9 to discuss complexity in Chapter 8.A quantitative theory of information
was developed by Shannon to describe the problem of communication. Specifically,
how much information can be communicated through a transmission channel (e.g.,
a telephone line) with a specified alphabet of letters and a rate at which letters can be
transmitted. The simplest example is a binary alphabet consisting of two characters
(digits) with a fixed rate of binary digits (bits) per second. However, the theory is gen-
eral enough to describe quite arbitrary alphabets,letters of variable duration such as
are involved in Morse code, or even continuous sound with a specified band-width.
We will not consider many of the additional applications,our objective is to establish
the basic concepts.

1.8.1 The amount of information in a message
We start by considering the information content of a string of digits s = (5;5,...5\).One
might naively expect that information is contained in the state of each digit. However,
when we receive a digit, we not only receive information about what the digit is, but
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also what the digit is not. Let us assume that a digit in the string of digits we receive is
the number 1. How much information does this provide? We can contrast two differ-
ent scenarios—binary and hexadecimal digits:

1. There were two possibilities for the number, either 0 or 1.

2. There were sixteen possibilities for the number {0, 1, 2,3,4,5, 6,7,8,9, A, B, C,

D, E, F}.

In which of these did the “1” communicate more information? Since the first case pro-
vides us with the information that it is “not 0,” while the second provides us with the
information that it is “not 0,” “not 2,” “not 3,” etc., the second provides more infor-
mation. Thus there is more information in a digit that can have sixteen states than a
digit that can have only two states.We can quantify this difference if we consider a bi-
nary representation of hexadecimal digits {0000,0001,0010,0011,...,1111}. It takes
four binary digits to represent one hexadecimal digit. The hexadecimal number 1 is
represented as 0001 in binary form and uses four binary digits. Thus a hexadecimal 1
contains four times as much information as a binary 1.

We note that the amount of information does not depend on the particular value
that is taken by the digit. For hexadecimal digits, consider the case of a digit that has
the value 5. Is there any difference in the amount of information given by the 5 than
if it were 1? No, either number contains the same amount of information.

This illustrates that information is actually contained in the distinction between
the state of a digit compared to the other possible states the digit may have. In order
to quantify the concept of information, we must specify the number of possible states.
Counting states is precisely what we did when we defined the entropy of a system in
Section 1.3. We will see that it makes sense to define the information content of a
string in the same way as the entropy—the logarithm of the number of possible states
of the string:

1(5) = log,(2) (1.8.1)

By convention, the information is defined using the logarithm base two. Thus, the
information contained in a single binary digit which has two possible states is log,(2) =1.
More generally, the number of possible states in a string of N bits, with each bit taking
one of two values (0 or 1) is 2N, Thus the information in a string of N bits is (in what
follows the function log( ) will be assumed to be base two):

Is) = log(?Y) =N (1.8.2)

EQ.(1.8.2) says that each bit provides one unit of information. This is consistent with
the intuition that the amount of information grows linearly with the length of the
string. The logarithm is essential, because the number of possible states grows expo-
nentially with the length of the string, while the information grows linearly.

It is important to recognize that the definition of information we have given as-
sumes that each of the possible realizations of the string has equal a priori probabil-
ity. We use the phrase a priori to emphasize that this refers to the probability prior to
receipt of the string—once the string has arrived there is only one possibility.
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To think about the role of probability we must discuss further the nature of the
message that is being communicated. We construct a scenario involving a sender and
a receiver of a message. In order to make sure that the recipient of the message could
not have known the message in advance (so there is information to communicate), we
assume that the sender of the information is sending the result of a random occur-
rence, like the flipping of a coin or the throwing of a die. To enable some additional
flexibility, we assume that the random occurrence is the drawing of a ball from a bag.
This enables us to construct messages that have different probabilities. To be specific,
we assume there are ten balls in the bag numbered from 0 to 9. All of them are red ex-
cept the ball marked 0, which is green. The person communicating the message only
reports ifthe ball drawn from the bag is red (using the digit 1) or green (using the digit
0). The recipient of the message is assumed to know about the setup. If the recipient
receives the number 0,he then knows exactly which ball was selected,and all that were
not selected. However, if he receives a 1, this provides less information, because he
only knows that one of nine was selected,not which one. We notice that the digit 1 is
nine times as likely to occur as the digit 0. This suggests that a higher probability digit
contains less information than a lower probability digit.

We generalize the definition of the information content of a string of digits to al-
low for the possibility that different strings have different probabilities. We assume
that the string is one of an ensemble of possible messages, and we define the infor-
mation as:

1(s) = - 10g(P(s)) (1.8.3)

where P(s) is the probability of the occurrence of the message s in the ensemble. Note
that in the case of equal a priori probability P(s) = 1/Q, Eq. (1.8.3) reduces to
Eq. (1.8.1). The use of probabilities in the definition of information makes sense in
one of two cases:(1) The recipient knows the probabilities that represent the conven-
tions of the transmission, or (2) A large number of independent messages are sent,
and we are considering the information communicated by one of them. Then we can
approximate the probability of a message by its proportion of appearance among the
messages sent. We will discuss these points in greater detail later.

is provided by a single digit in the example given in the text of drawing

guestion 1.8.1 Calculate the information, according to Eq.(1.8.3),that
red and green balls from a bag.

Solution 1.8.1 For the case of a 0,the information is the same as that of a
decimal digit:

1(0) =- log(1/10) » 3.32 (1.8.4)
For the case of a 1 the information is
1(0) =-1og(9/10) » 0.152 (1.85) O

We can specialize the definition of information in Eq. (1.8.3) to a message
s = (54S,...5y) composed of individual characters (bits, hexadecimal characters,
ASCII characters, decimals, etc.) that are completely independent of each other



Information 217

(for example, each corresponding to the result of a separate coin toss). This means
that the total probability of the message is the product of the probability of each
character, P(s) = iOP(si). Then the information content of the message is given by:

o
I6)=-a log(P(s)) (1.8.6)
i
If all of the characters have equal probability and there are k possible characters in the
alphabet, then P(s;) = 1/k, and the information content is:

I(s) = N log(k) (1.8.7)

For the case of binary digits,this reduces to Eq.(1.8.2). For other cases like the hexa-
decimal case, k = 16,this continues to make sense:the information | =4N corresponds
to the requirement of representing each hexadecimal digit with four bits. Note that
the previous assumption of equal a priori probability for the whole string is stronger
than the independence of the digits and implies it.

uestion 1.8.2 Apply the definition of information contentin Eq.(1.8.3)

to each of the following cases. Assume messages consist of a total of N bits
subject to the following constraints (aside for the constraints assume equal
probabilities):

1. Everyeven bitis 1.
2. Every (odd, even) pair of bits is either 11 or 00.

3. Every eighth bit is a parity bit (the sum modulo 2 of the previous seven
bits).

Solution 1.8.2: In each case, we first give an intuitive argument, and then
we show that Eq. (1.8.3) or Eg. (1.8.6) give the same result.

1. The only information that is transferred is the state of the odd bits. This
means that only half of the bits contain information. The total infor-
mation is N / 2. To apply Eq.(1.8.6), we see that the even bits, which al-
ways have the value 1, have a probability P(1) = 1 which contributes no
information. Note that we never have to consider the case P(0) =0 for
these bits, which is good, because by the formula it would give infinite
information. The odd bits with equal probabilities, P(1) = P(0) = 1/2,
give an information of one for either value received.

2. Every pair of bits contains only two possibilities, giving us the equiva-
lent of one bit of information rather than two. This means that total in-
formation is N/2. To apply Eqg.(1.8.6), we have to consider every (odd,
even) pair of bits as a single character. These characters can never have
the value 01 or 10, and they have the value 11 or 00 with probability
P(11) = P(00) = 1/2, which gives the expected result. We will see later
that there is another way to think about this example by using condi-
tional probabilities.

3. The number of independent pieces of information is 7N / 8. To see this
from Eq. (1.8.6), we group each set of eight bits together and consider
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them as a single character (a byte). There are only 2’ different possibil-
ities for each byte, and each one has equal probability according to our
constraints and assumptions. This gives the desired result.

Note: Such representations are used to check for noise in transmission.
If there is noise,the redundancy of the eighth bit provides additional in-
formation. The noise-dependent amount of additional information can
also be quantified; however, we will not discuss it here. [

uestion 1.8.3 Consider a transmission of English characters using

an ASCII representation. ASCII characters are the conventional
method for computer representation of English text including small and
capital letters, numerals and punctuation. Discuss (do not evaluate for
this question) how you would determine the information content of a
message. We will evaluate the information content of English in a later
question.

Solution 1.8.3 In ASCII, characters are represented using eight bits. Some
of the possible combinations of bits are not used at all. Some are used very
infrequently. One way to determine the information content of a message is
to assume a model where each of the characters is independent. To calculate
the information content using this assumption, we must find the probabil-
ity of occurrence of each character in a sample text. Using these probabili-
ties,the formula Eq.(1.8.6) could be applied. However, this assumes that the
likelihood of occurrence of a character is independent of the preceding char-
acters, which is not correct. O

uestion 1.8.4: Assume that you know in advance that the number of

ones in a long binary message is M. The total number of bits is N. What
is the information content of the message? Is it similar to the information
content of a message of N independent binary characters where the proba-
bility that any character is one is P(1) =M /N?

Solution 1.8.4:We count the number of possible messages with M ones and
take the logarithm to obtain the information as

0
I = Iog(gN +)= Iog(L) (1.8.8)
Mg MI(N - M)!
We can show that this is almost the same as the information of a message of
the same length with a particular probability of ones, P(1) =M/ N, by use of
the first two terms of Sterling’s approximation Eq. (1.2.36). Assuming 1 <<
M << N (A correction to this would grow logarithmically with N and can be

found using the additional terms in (Eq. (1.2.36)):
I ~N(log(N) - 1) - M(log(M) - 1)- (N - M)(log(N - M) - 1) (189)
=- N[P(1)log(P(1)) + (1 - P(1))log(L - P(1))] -
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This is the information from a string of independent characters where
P(1) = M/ N. For such a string, the number of ones is approximately NP(1)
and the number of zeros N(1 - P(1)) (see also Question 1.8.7). O

1.8.2 Characterizing sources of information

The information content of a particular message is defined in terms of the probabil-
ity that it,out of all possible messages, will be received. This means that we are char-
acterizing not just a message but the source of the message.A direct characterization
of the source is not the information of a particular message, but the average informa-
tion over the ensemble of possible messages. For a set of possible messages with a
given probability distribution P(s) this is:

<1 >=-§ PE)log(PE)) (1.8.10)

If the messages are composed out of characters s = (s;5,...5y),and each character is de-
termined independently with a probability P(s;), then we can write the information
content as:

<1>=-§0 P(si)gloggé PEo=- & 0 PSR 100(P (o)
s € a i a s € D¢

(1.8.11)

We can move the factor in parenthesis inside the inner sum and interchange the or-
der of the summations.

o o 0 o £y X 0,
<1>=-3 agéwsi)%log(P(sm)):-a ¢ & OP6)-a PGilog(PG:0)

ic s i ic ik itic Bsie
(1.8.12)
The latter expression results from recognizing that the sum over all possible states is

a sum over all possible values of each of the letters. The sum and product can be
interchanged:

a Ors)=0are)-=t (1.8.13)
{si}si 1%i€C itic g
giving the result:
<I>=-3 & PGsolog(PGio) (1.8.14)
i¢ Si¢

This shows that the average information content of the whole message is the average
information content of each character summed over the whole character string. If the
characters have the same probability, this is just the average information content of an
individual character times the number of characters. If all letters of the alphabet have
the same probability, this reduces to Eq. (1.8.7).
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The average information content of a binary variable is given by:
<I1>=-(P(1)log(P(1)) + P(0)log(P(0))) (1.8.15)

Aside from the use of a logarithm base two, this is the same as the entropy of a spin
(Section 1.6) with two possible states s = +1 (see Question 1.8.5). The maximum in-
formation content occurs when the probabilities are equal, and the information goes
to zero when one of the two becomes one,and the other zero (see Fig. 1.8.1). The in-
formation reflects the uncertainty in, or the lack of advance knowledge about, the
value received.

uestion 1.8.5 Show that the expression for the entropy S given in
QEq. (1.6.16) of a set of noninteracting binary spins is the same as the
information content defined in Eq.(1.8.15) aside from a normalization con-
stant k In(2). Consider the binary notation s; = 0 to be the same as s; = - 1 for
the spins.

20

—log(P)

15

1.0 | —Plog(P)—-(1-P)log(1-P)

051 —Plog(P)

0.0
0 0.2 0.4 0.6 P 0.8 1

Figure 1.8.1 Plots of functions related to the information content of a message with proba-
bility P. - log(P) is the information content of a single message of probability P. - Plog(P) is
the contribution of this message to the average information given by the source. While the
information content of a message diverges as P goes to zero, it appears less frequently so its
contribution to the average information goes to zero. If there are only two possible messages,
or two possible (binary) characters with probability P and 1 - P then the average information
given by the source per message or per character is given by - Plog(P) - (1 - P)log(1- P). O
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Solution 1.8.5 The local magnetization m; is the average value of a partic-
ular spin variable:

m; =P (1) - Py(-1) (1.8.16)
Using Psi @+ PSi (-1) =1 we have:

Ps, (1) =(1+m;)/2

Pe(-1)=(1-m)/2

Inserting these expressions into Eq. (1.8.15) and summing over a set of bi-
nary variables leads to the expression:

(1.8.17)

§\| : %é.' ((1+mi)|og(1+mi)+(1- m;)log(1- mi))E:S/kln(Z)

(1.8.18)
The result is more general than this derivation suggests and will be discussed
further in Chapter 8. O

uestion 1.8.6 For agiven set of possible messages, prove that the en-
semble where all messages have equal probability provides the highest
average information.

Solution 1.8.6 Since the sum over all probabilities is a fixed number (1), we
consider what happens when we transfer some probability from one message
to another. We start with the information given by

<l >=-PGEQIn(PEY) - PEHBIn(PE B)- é P@)IN(P(s)) (1.8.19)

stsgsa

and after shifting a probability of & from one to the other we have:

<16>=-(P(s9- 8)In(PY- 3)- (PH+0)IN(P §+5)- A PE)IN(PE))

sls@s¢
(1.8.20)

We need to expand the change in information to first nonzero order in 8. We
simplify the task by using the expression:

<I®- <I>=f(P(s9 +8) - f(P(sY) +f(P(s2)- 8) - f(P(s?)) (1.8.21)
where
f (x) = - xlog(x) (1.8.22)

Taking a derivative, we have
dd—f(x): - (log(x) +1) (1.8.23)
X

This gives the result:
<lI¢- <I>=-(log(P(s9) - log(P(s2)))d (1.8.24)
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Thus far we have considered characters that are independent of each other. We can
also consider characters whose values are correlated. We describe the case of two cor-
related characters. Because there are two characters,the notation must be more com-
plete. As discussed in Section 1.2, we use the notation P ¢ (s¢, s9) to denote the prob-
ability that in the same string the character s, takes the value s¢and the variable s, takes

Introduction and Preliminaries

Since log(x) is a monotonic increasing function, we see that the average in-
formation increases ((<1¢ - <1>) >0) when probability 8 >0 is transferred
from a higher-probability character to a lower-probability character (P (s2)
>PGEO P -(log(P(s9) - log(P(s2)) >0). Thus,any change of the probabil-
ity toward a more uniform probability distribution increases the average in-
formation. O

uestion 1.8.7 A source produces strings of characters of length N. Each

character that appears in the string is independently selected from an al-
phabet of characters with probabilities P(s;). Write an expression for the
probability P(s) of a typical string of characters. Show that this expression
implies that the string gives N times the average information content of an
individual character. Does this mean that every string must give this amount
of information?

Solution 1.8.7 For a long string, each character will appear NP(s;) times.
The probability of such a string is:

Pe)=0Pe)v® (1.8.25)

The information content is:

16)= - log(PE) = - N P(s)logPG:)) (1.8.26)

Si

which is N times the average information of a single character. This is the in-
formation of a typical string. A particular string might have information sig-
nificantly different from this. However, as the number of characters in the
string increases, by the central limit theorem (Section 1.2), the fraction of
times a particular character appears (i.e., the distance traveled in a random
walk divided by the total number of steps) becomes more narrowly distrib-
uted around the expected probability P(s;). This means the proportion of
messages whose information content differs from the typical value decreases
with increasing message length. O

1.8.3 Correlations between characters

the value s¢. The average information contained in the two characters is given by:

<l I é. PSlSz(Sf',S@mg(PSM (5959)) (1.8.27)
s@sg
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Note that the notation I(s,,S,) is often used for this expression. We use <I, ;> because
it is not a function of the values of the characters—it is the average information car-
ried by the characters labeled by s, and s,. We can compare the information content
of the two characters with the information content of each character separately:

PGP =8 Py, (5859
s§

o (1.8.28)
PSZ (59 = a Psl,Sz (8&59
st
o] o
<l S >=- a Pslsz (SESQIOg(a Pslsz(sﬁsm
sfis¢ s¢
o o (1.8.29)
<l S2 »=- a Psl,sz (SESQ)IOQ(a PSLSZ(Sﬂ?SQ))
s$s¢ s
It is possible to show (see Question 1.8.8) the inequalities:
<lg,>+<lg,> 3 <lg,,> 3 <l,><Igy > (1.8.30)

The right inequality means that we receive more information from both characters
than from either one separately. The left inequality means that information we receive
from both characters together cannot exceed the sum of the information from each
separately. It can be less if the characters are dependent on each other. In this case, re-
ceiving one character reduces the information given by the second.

The relationship between the information from a character s; and the informa-
tion from the same character after we know another character s, can be investigated
by defining a contingent or conditional probability:

Py s, Gfis9)

Ps,s, 6 s = m (1.8.31)
6

This is the probability thats, takes the value s¢assuming that s, takes the value s¢. We
used this notation in Section 1.2 to describe the transitions from one value to the next
in a chain of events (random walk). Here we are using it more generally. We could
recover the previous meaning by writing the transition probability as P,(s¢|s¢) =
Ps@.st - 1(S$Is9. In this section we will be concerned with the more general defini-
tion, Eq. (1.8.31).

We can find the information content of the character s, when s, takes the value s¢

<l >, Ly =-8 R, s, (HsHI0g Py, (H1s9)
s

8

¥ Psl,sz(sﬁs@)g?og@sl,sz(sp;sm- 10g(8 P, ., (0%59)
s

- Sl 2 (1.8.32)
a Ps s, 689
s¢
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This can be averaged over possible values of s,, giving us the average information con-
tent of the character s, when the character s, is known.

o
<< |sllsz >> <<|sl >|32:59>

=- é PSZ(SE:)é. P31,52 (S1¢| SéDloQ(Psl,sz(sﬂ:lsﬂ))

s¢ s¢

=- é. é Psl,Sz (Smg:)é Mbg(%,sz (qu Sg:)) (1833)
s§ st s¢ a Psl,sz(sfusg)

s¢

=- é Psl,s2 (SF:SQ:)IOQ(PSI,SZ (SPISQ”))
sgsg

The average we have taken should be carefully understood. The unconventional dou-
ble average notation is used to indicate that the two averages are of a different nature.
One way to think about it is as treating the information content of a dynamic variable
s, when s, isa quenched (frozen) random variable. \We can rewrite this in terms of the
information content of the two characters,and the information content of the char-
acter s, by itself as follows:

<) 0
<lgy, >>=- & Py, (£5Dclog(R,, s, (6£59)- og(Q Py, s, CHH)-
stsé e st [

_<|51v52 >'<ISz>

(1.8.34)

Thus we have:

<lg5, > =<l >+ <<lgy >> =<l >+ <<lgy, >> (1.8.35)

$1,82

This is the intuitive result that the information content given by both characters is the
same as the information content gained by sequentially obtaining the information
from the characters.Once the first character is known,the second character provides
only the information given by the conditional probabilities. There is no reason to re-
strict the use of Eq.(1.8.27) — Eq.(1.8.35) to the case where s, is a single character and
s, is a single character. It applies equally well if s, is one set of characters,and s, is an-
other set of characters.

Question 1.8.8 Prove the inequalities in Eq. (1.8.30).

Hints for the left inequality:

1. Itis helpful to use Eq. (1.8.35).

2. Use convexity (f(&f) > & (x)f) of the function f(x) = - xlog(x).
Solution 1.8.8 The right inequality in Eq. (1.8.30) follows from the in-
equality:

P, 6B =8 P, (588 >P, , (s859) (1.8.36)
s¢
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The logarithm is a monotonic increasing function, so we can take the
logarithm:

l0g(Q Py, 5, G H59) > l0g(P;, 5, s $59) (18.37)
s
Changing sign and averaging leads to the desired result:
<ls, >=- Py, 6£59)10g(Q Py s, (858)
sg.sg st

< - é. PSl,SZ (Sfrys?)log(PSLSz(slq;S?) =<l S1,82 >

s¢sg

(1.8.38)

The left inequality in Eq. (1.8.30) may be proven from Eq. (1.8.35) and the
intuitive inequality

(<5, >) > (<<lgy5, >>) (1.8.39)

To prove this inequality we make use of the convexity of the function f(x) =
- xlog(x). Convexity of a function means that its value always lies above line
segments (secants) that begin and end at points along its graph.
Algebraically:

f((ax +by) / (a+b)) > (af(x) +bf(y)) / (a+b) (1.8.40)

More generally, taking a set of values of x and averaging over them gives:

f (&) > & (X)fi (1.8.41)
Convexity of f(x) follows from the observation that
d’f 1
—_ <0 (1.8.42)
dx?  xIn@)

for all x > 0, which is where the function f (x) is defined.

We then note the relationship:

PS1(59 = é pSz (89)951,52 (qus» =< PSle? (Sﬂ39 >Sz (1843)
s¢

where, to simplify the following equations, we use a subscript to indicate the
average with respect to s,. The desired result follows from applying convex-
ity as follows:

<l >=-§ P (Hlog(P, (0)=Q f (R, () =& f(<Py s, (859>,

s s¢ s¢

> A <f(Pys, Gl >,
s¢

=- & P, 6HDA P, s, (#1s9)log(P, o, (LIs9) = <<I, >>

sg s
(1.8.44)
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the final equality following from the definition in Eqg. (1.8.33). We can now
make use of Eq. (1.8.35) to obtain the desired result. O

1.8.4 Ergodic sources

We consider a source that provides arbitrarily long messages, or simply continues to
give characters at a particular rate. Even though the messages are infinitely long, they
are still considered elements of an ensemble. It is then convenient to measure the av-
erage information per character. The characterization of such an information source
is simplified if each (long) message contains within it a complete sampling of the pos-
sibilities. This means that if we wait long enough, the entire ensemble of possible
character sequences will be represented in any single message. This is the same kind
of property as an ergodic system discussed in Section 1.3. By analogy, such sources are
known as ergodic sources. For an ergodic source,not only the characters appear with
their ensemble probabilities, but also the pairs of characters, the triples of characters,
and so on.

For ergodic sources,the information from an ensemble average over all possible
messages is the same as the information for a particular long string. To write this
down we need a notation that allows variable length messages. We write Sy = (515,---5\):
where N is the length of the string. The average information content per character
may be written as:

<l >
i.>= i 3 =- i io =- i i
<i>= i ==l 8 P ogP) = - im 100 )

(1.8.45)

The rightmost equality is valid for an ergodic source. An example of an ergodic source
is a source that provides independent characters—i.e., selects each character from an
ensemble. For this case, Eq.(1.8.45) was shown in Question 1.8.7. More generally, for
a source to be ergodic, long enough strings must break up into independent sub-
strings, or substrings that are more and more independent as their length increases.
Assuming that N is large enough, we can use the limit in Eq. (1.8.45) and write:

Plon)»2 N (1.8.46)

Thus, for large enough N, there are a set of strings that are equally likely to be gener-
ated by the source. The number of these strings is

N> (1.8.47)
Since any string of characters is possible,in principle,this statement must be formally
understood as saying that the total probability of all other strings becomes arbitrarily
small.

If the string of characters is a Markov chain (Section 1.2),s0 that the probability
of each character depends only on the previous character, then there are general con-
ditions that can ensure that the source is ergodic. Similar to the discussion of Monte
Carlo simulations in Section 1.7, for the source to be ergodic,the transition probabil-
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ities between characters must be irreducible and acyclic. Irreducibility guarantees that
all characters are accessible from any starting character. The acyclic property guaran-
tees that starting from one substring, all other substrings are accessible. Thus, if we
can reach any particular substring, it will appear with the same frequency in all long
strings.

We can generalize the usual Markov chain by allowing the probability of a char-
acter to depend on several (n) previous characters. A Markov chain may be con-
structed to represent such a chain by defining new characters, where each new char-
acter is formed out of a substring of n characters. Then each new character depends
only on the previous one. The essential behavior of a Markov chain that is important
here is that correlations measured along the chain of characters disappear exponen-
tially. Thus,the statistical behavior of the chain in one place is independent of what it
was in the sufficiently far past. The number of characters over which the correlations
disappear is the correlation length. By allowing sufficiently many correlation lengths
along the string—segments that are statistically independent—the average properties
of one string will be the same as any other such string.

uestion 1.8.9 Consider ergodic sources that are Markov chains with
Qtwo characters s; = £1 with transition probabilities:
P(1]1) =.999, P(- 1|]1) =.001, P(- 1}- 1) = 0.5, P(1}- 1) =0.5
P(1]1) =.999, P(- 1]1) =.001, P(- 1)- 1) =0.999, P(1}- 1) = 0.001
P(1]1) =.999, P(- 1]1) =.001, P(- 1J- 1) =0.001, P(1}- 1) = 0.999
P(1]1) =.001, P(- 1|]1) =.999, P(- 1}- 1) = 0.5, P(1}- 1) =0.5
P(1]1) =.001, P(- 1|]1) =.999, P(- 1}- 1) =0.999, P(1}- 1) = 0.001

f. P(1]1) =.001, P(-1|1) =.999, P(- 1}- 1) = 0.001, P(1]- 1) = 0.999
Describe the appearance of the strings generated by each source, and
(roughly) its correlation length.

®© 2 o T @

Solution 1.8.9 (a) has long regions of 1s of typical length 1000. In between
there are short strings of —1s of average length2 =1 +1/2 +1/4 + ...(there
is a probability of 1/2 that a second character will be —1 and a probability of
1/4 that both the second and third will be -1, etc.). (b) has long regions of
1s and long regions of —1s, both of typical length 1000. (c) is like (a) except
the regions of —1s are of length 1. (d) has no extended regions of 1 or —1 but
has slightly longer regions of —1s. (e) inverts (c). (f ) has regions of alternat-
ing 1 and -1 of length 1000 before switching to the other possibility (odd and
even indices are switched). We see that the characteristic correlation length
is of order 1000 in (a),(b),(c),(e) and (f ) and of order 2 in (d). O

We have considered in detail the problem of determining the information con-
tent of a message, or the average information generated by a source, when the char-
acteristics of the source are well defined. The source was characterized by the ensem-
ble of possible messages and their probabilities. However, we do not usually have a
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well-defined characterization of a source of messages,so a more practical question is
to determine the information content from the message itself. The definitions that we
have provided do not guide us in determining the information of an arbitrary mes-
sage. We must have a model for the source. The model must be constructed out of the
information we have—the string of characters it produces.One possibility is to model
the source as ergodic. An ergodic source can be modeled in two ways, as a source of
independent substrings or as a generalized Markov chain where characters depend on
a certain number of previous characters. In each case we construct not one,but an in-
finite sequence of models. The models are designed so that if the source is ergodic
then the information estimates given by the models converge to give the correct in-
formation content.

There is a natural sequence of independent substring models indexed by the
number of characters in the substrings n. The first model is that of a source produc-
ing independent characters with a probability specified by their frequency of occur-
rence in the message. The second model would be a source producing pairs of corre-
lated characters so that every pair of characters is described by the probability given
by their occurrence (we allow character pairs to overlap in the message). The third
model would be that of a source producing triples of correlated characters,and so on.
We use each of these models to estimate the information. The nth model estimate of
the information per character given by the source is:

. . 1lo ~ ~
<is >1,= lim =8 Py(30)10gPu 1) (1848)
¥n

where we indicate using the subscript 1,n that this is an estimate obtained using the
first type of model (independent substring model) using substrings of length n. We
also make use of an approximate probability for the substring defined as

PnGn) =NGEn)/(N- n+l) (1.8.49)

where N(s,,) is the number of times s, appears in the string of length N. The informa-
tion of the source might then be estimated as the limitn ® ¥ of Eq. (1.8.48):

<i, >=lim lim = 81109 ) (1850)
For an ergodic source, we can see that this converges to the information of the mes-
sage. The n limit converges monotonically from above. This is because the additional
information in s, given by s, is less than the information added by each previous
character (see Eqg. 1.8.59 below). Thus, the estimate of information per character
based on s, is higher than the estimate based on s,,,;. Therefore, for each value of n the
estimate <ig>, , is an upper bound on the information given by the source.

How large does N have to be? Since we must have a reasonable sample of the oc-
currence of substrings in order to estimate their probability, we can only estimate
probabilities of substrings that are much shorter than the length of the string. The
number of possible substrings grows exponentially with n as k", where k is the num-
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ber of possible characters. If substrings occur with roughly similar probabilities,
then to estimate the probability of a substring of length n would require at least a
string of length k" characters. Thus,taking the large N limit should be understood to
correspond to N greater than k". This is a very severe requirement. This means that
to study a model of English character strings of length n = 10 (ignoring upper and
lower case, numbers and punctuation) would require 26*° ~ 10 characters. This is
roughly the number of characters in all of the books in the Library of Congress (see
Question 1.8.15).

The generalized Markov chain model assumes a particular character is depen-
dent only on n previous characters. Since the first n characters do not provide a sig-
nificant amount of information for a very long chain (N >>n), we can obtain the av-
erage information per character from the incremental information given by a
character. Thus, for the nth generalized Markov chain model we have the estimate:

o - o - g
<i. >, =<« >>= i Pn Gn- P DI )
Is Zon Snl§n-1 N|®m¥sa-l N (§n 1)San. Gn |§n 1)10g(P Gn $n 1)) (1851)
where we define the approximate conditional probability using:
P Gn 130-1) = N G- 180)/N G- ) (1.8.52)

Taking the limit n ® ¥ we have an estimate of the information of the source per
character:

o = o = ing

<ig>=Ilim lim @ Py (p- PGnlsn-1)10g(P G |3
s n®¥N®¥a N Gn 1)sa Gn l$r-1)109(P G I$n- 1)) (1.8.53)

n-1 n
This also converges from above as a function of n for large enough N. For a given n, a
Markov chain model takes into account more correlations than the previous inde-
pendent substring model and thus gives a better estimate of the information
(Question 1.8.10).

uestion 1.8.10 Prove that the Markov chain model gives a better esti-

mate of the information for ergodic sources than the independent sub-
string model for a particular n. Assume the limit N® ¥ so that the estimated
probabilities become actual and we can substitute By, ® P in Eq.(1.8.48) and
Eq. (1.8.51).

Solution 1.8.10 The information in a substring of length n is given by the
sum of the information provided incrementally by each character, where the
previous characters are known. We derive this statement algebraically
(Eqg. (1.8.59)) and use it to prove the desired result. Taking the N limitin
Eq. (1.8.48), we define the nth approximation using the independent sub-
string model as:

. 1o
<lg >1n= ;a PGn)log(P(sn)) (1.8.54)
in
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and for the nth generalized Markov chain model we take the same limit in
Eq. (1.8.51):

<ig >3, = A PG )@ PGn 50 DI00PGn IS 1)) (1.855)

Sn-1 Sn

To relate these expressions to each other, follow the derivation of Eq.(1.8.34),
or use it with the substitutionss; ® s, ;and s, ® s,, to obtain

®e 0
<ig>,=- a P(s.n.lsn)gog(P@n.lsn)r log(@ PGn s ) (1.8.56)
Sn-1:5n S %}

Using the identities
P(S.n—lsﬂ) = P@n)

PGy.1)= é P($p-150) (1.8.57)
sn
this can be rewritten as:
<lg> n =N<ig> - (N- D<ig>; (1.8.58)

This result can be summed over n from 1 to n (the n = 1 case is
<i;>,, = <ig>) ;) to obtain:

n
a  <is>pnen <is >, (1.8.59)
n&1

since < is >, , is monotonic decreasing and < is >y  is seen from this expres-
sion to be an average over <i; >, , with lower values of n, we must have that

<ig>y, £ <ig>, (1.8.60)

as desired. O

uestion 1.8.11 We have shown that the two models—the independent

substring models and the generalized Markov chain model—are upper
bounds to the information in a string. How good is the upper bound? Think
up an example that shows that it can be terrible for both, but better for the
Markov chain.

Solution 1.8.11 Consider the example of a long string formed out of a re-
peating substring, for example (000000010000000100000001...). The aver-
age information content per character of this string is zero. This is because
once the repeat structure has become established,there is no more informa-
tion. Any model that gives a nonzero estimate of the information content per
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character will make a great error in its estimate of the information content
of the string, which is N times as much as the information per character.

For the independent substring model,the estimate is never zero. For the
Markov chain model it is nonzero until n reaches the repeat distance. A
Markov model with n the same size or larger than the repeat length will give
the correct answer of zero information per character. This means that even
for the Markov chain model, the information estimate does not work very
well for n less than the repeat distance. [

uestion 1.8.12 Write a computer program to estimate the information

in English and find the estimate. For simple,easy-to-compute estimates,
use single-character probabilities,two-character probabilities,and a Markov
chain model for individual characters. These correspond to the above defin-
itions of <ig >, ;= <i;>; 1, <is>; ,, and <ig >, , respectively.

Solution 1.8.12 A program that evaluates the information content using
single-character probabilities applied to the text (excluding equations) of
Section 1.8 of this book gives an estimate of information content of 4.4
bits/character. Two-character probabilities gives 3.8 bits/character, and the
one-character Markov chain model gives 3.3 bits/character. A chapter of a
book by Mark Twain gives similar results. These estimates are decreasing in
magnitude, consistent with the discussion in the text. They are also still quite
high as estimates of the information in English per character.

The best estimates are based upon human guessing of the next charac-
ter in awritten text. Such experiments with human subjects give estimates of
the lower and upper bounds of information content per character of English
text. These are 0.6 and 1.2 bits/character. This range is significantly below the
estimates we obtained using simple models. Remarkably, these estimates
suggest that it is enough to give only one in four to one in eight characters of
English in order for text to be decipherable. O

uestion 1.8.13 Construct an example illustrating how correlations can

arise between characters over longer than,say, ten characters. These cor-
relations would not be represented by any reasonable character-based
Markov chain model. Is there an example of this type relevant to the English
language?

Solution 1.8.13 Example 1: If we have information that is read from a ma-
trix row by row, where the matrix entries have correlations between rows,
then there will be correlations that are longer than the length of the matrix
rows.

Example 2: We can think about successive English sentences as rows of
a matrix. We would expect to find correlations between rows (i.e., between
words found in adjacent sentences) rather than just between letters. [

231
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uestion 1.8.14 Estimate the amount of information in a typical book
(order of magnitude is sufficient). Use the best estimate of information
content per character of English text of about 1 bit per character.

Solution 1.8.14 A rough estimate can be made using as follows: A 200
page novel with 60 characters per line and 30 lines per page has 4 = 10°
characters. Textbooks can have several times this many characters.A dictio-
nary, which is significantly longer than a typical book, might have 2 © 10’
characters. Thus we might use an order of magnitude value of 10° bits per
book. O

uestion 1.8.15 Obtain an estimate of the number of characters (and
thus the number of bits of information) in the Library of Congress.
Assume an average of 10° characters per book.

Solution 1.8.15 According to information provided by the Library of
Congress,there are presently (in 1996) 16 million books classified according
to the Library of Congress classification system, 13 million other books at
the Library of Congress, and approximately 80 million other items such as
newspapers, maps and films. Thus with 107-10® book equivalents, we esti-
mate the number of characters as 10°-10". O

Inherent in the notion of quantifying information content is the understanding
that the same information can be communicated in different ways, as long as the
amount of information that can be transmitted is sufficient. Thus we can use binary,
decimal, hexadecimal or typed letters to communicate both numbers and letters.
Information can be communicated using any set of (two or more) characters. The
presumption is that there is a way of translating from one to another. Translation op-
erations are called codes; the act of translation is encoding or decoding. Among pos-
sible codes are those that are invertible.Encoding a message cannot add information,
it might,however, lose information (Question 1.8.16). Invertible codes must preserve
the amount of information.

Once we have determined the information content, we can compare different
ways of writing the same information. Assume that one source generates a message of
length N characters with information 1. Then a different source may transmit the
same information using fewer characters. Even if characters are generated at the same
rate,the information may be more rapidly transmitted by one source than another. In
particular, regardless of the value of N, by definition of information content, we could
have communicated the same information using a binary string of length I. It is,how-
ever, impossible to use fewer than | bits because the maximum information a binary
message can contain is equal to its length. This amount of information occurs for a
source with equal a priori probability.

Encoding the information in a shorter form is equivalent to data compression.
Thus a completely compressed binary data string would have an amount of informa-
tion given by its length. The source of such a message would be characterized as a
source of messages with equal a priori probability—a random source. We see that ran-
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domness and information are related. Without a translation (decoding) function it
would be impossible to distinguish the completely compressed information from ran-
dom numbers. Moreover, a random string could not be compressed.

uestion 1.8.16 Prove that an encoding operation that takes a message

as input and converts it into another well-defined message (i.e., for a
particular input message, the same output message is always given) cannot
add information but may reduce it. Describe the necessary conditions for it
to keep the same amount of information.

Solution 1.8.16 Our definition of information relies upon the specifica-
tion of the ensemble of possible messages. Consider this ensemble and as-
sume that each message appears in the ensemble a number of times in pro-
portion to its probability, like the bag with red and green balls. The effect of
a coding operation is to label each ball with the new message (code) that will
be delivered after the coding operation. The amount of information depends
not on the nature of the label, but rather on the number of balls with the
same label. The requirement that a particular message is encoded in a well-
defined way means that two balls that start with the same message cannot be
labeled with different codes. However, it is possible for balls with different
original messages to be labeled the same. The average information is not
changed if and only if all distinct messages are labeled with distinct codes. If
any distinct messages become identified by the same label, the information
is reduced.

We can prove this conclusion algebraically using the result of
Question 1.8.8, which showed that transferring probability from a less likely
to a more likely case reduced the information content. Here we are,in effect,
transferring all of the probability from the less likely to the more likely case.
The change in information upon labeling two distinct messages with the
same code is given by (f (x) = - xlog(x), as in Question 1.8.8):

DI =f(P(s;) +P(s2)) - (F(P(51) +(P(s2))
= (f(P(sp) +P(s2)) +1(0)) - (F(P(s) +f(P(52))) <O

where the inequality follows because f(x) is convex in the range 0 <x< 1. O

(1.8.61)

1.8.5 Human communication

The theory of information, like other theories, relies upon idealized constructs that
are useful in establishing the essential concepts, but do not capture all features of real
systems. In particular, the definition and discussion of information relies upon
sources that transmit the result of random occurrences, which, by definition, cannot
be known by the recipient. The sources are also completely described by specifying the
nature of the random process. This model for the nature of the source and the recip-
ient does not adequately capture the attributes of communication between human
beings. The theory of information can be applied directly to address questions about
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information channels and the characterization of communication in general. It can
also be used to develop an understanding of the complexity of systems. In this section,
however, we will consider some additional issues that should be kept in mind when
applying the theory to the communication between human beings. These issues will
arise again in Chapter 8.

The definition of information content relies heavily on the concepts of probabil-
ity, ensembles, and processes that generate arbitrarily many characters. These con-
cepts are fraught with practical and philosophical difficulties—when there is only one
transmitted message,how can we say there were many that were possible? A book may
be considered as a single communication.A book has finite length and, for a particu-
lar author and a particular reader, is a uniqgue communication. In order to understand
both the strengths and the limitations of applying the theory of information,it is nec-
essary to recognize that the information content of a message depends on the infor-
mation that the recipient of the message already has. In particular, information that
the recipient has about the source. In the discussion above,a clear distinction has been
made. The only information that characterizes the source is in the ensemble proba-
bilities P(s). The information transmitted by a single message is distinct from the en-
semble probabilities and is quantified by I(s). It is assumed that the characterization
of the source is completely known to the recipient. The content of the message is com-
pletely unknown (and unknowable in advance) to the recipient.

A slightly more difficult example to consider is that of a recipient who does not
know the characterization of the source. However, such a characterization in terms of
an ensemble P(s) does exist. Under these circumstances, the amount of information
transferred by a message would be more than the amount of information given by
1(s). However, the maximum amount of information that could be transferred would
be the sum of the information in the message,and the information necessary to char-
acterize the source by specifying the probabilities P(s). This upper bound on the in-
formation that can be transferred is only useful if the amount of information neces-
sary to characterize the source is small compared to the information in the message.

The difficulty with discussing human communication is that the amount of in-
formation necessary to fully characterize the source (one human being) is generally
much larger than the information transmitted by a particular message. Similarly, the
amount of information possessed by the recipient (another human being) is much
larger than the information contained in a particular message. Thus it is reasonable
to assume that the recipient does not have a full characterization of the source. It is
also reasonable to assume that the model that the recipient has about the source is
more sophisticated than a typical Markov chain model, even though it is a simplified
model of a human being. The information contained in a message is, in a sense, the
additional information not contained in the original model possessed by the recipi-
ent. This is consistent with the above discussion, but it also recognizes that specifying
the probabilities of the ensemble may require a significant amount of information. It
may also be convenient to summarize this information by a different type of model
than a Markov chain model.
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Once the specific model and information that the recipient has about the source
enters into an evaluation of the information transfer, there is a certain and quite rea-
sonable degree of relativity in the amount of information transferred. An extreme ex-
ample would be if the recipient has already received a long message and knows the
same message is being repeated,then no new information is being transmitted.A per-
son who has memorized the Gettysburg Address will receive very little new informa-
tion upon hearing or reading it again. The prior knowledge is part of the model pos-
sessed by the recipient about the source.

Can we incorporate this in our definition of information? In every case where we
have measured the information of a message, we have made use of a model of the
source of the information. The underlying assumption is that this model is possessed
by the recipient. It should now be recognized that there is a certain amount of infor-
mation necessary to describe this model. As long as the amount of information in the
model is small compared to the amount of information in the message, we can say
that we have an absolute estimate of the information content of the message. As soon
as the information content of the model approaches that of the message itself, then
the amount of information transferred is sensitive to exactly what information is
known. It might be possible to develop a theory of information that incorporates the
information in the model,and thus to arrive at a more absolute measure of informa-
tion. Alternatively, it might be necessary to develop a theory that considers the recip-
ient and source more completely, since in actual communication between human be-
ings, both are nonergodic systems possessed of a large amount of information. There
is significant overlap of the information possessed by the recipient and the source.
Moreover, this common information is essential to the communication itself.

One effort to arrive at a universal definition of information content of a message
has been made by formally quantifying the information contained in models. The re-
sulting information measure, Kolmogorov complexity, is based on computation the-
ory discussed in the next section. While there is some success with this approach,two
difficulties remain. In order for a universal definition of information to be agreed
upon,models must still have an information content which is less than the message—
knowledge possessed must be smaller than that received. Also, to calculate the infor-
mation contained in a particular message is essentially impossible, since it requires
computational effort that grows exponentially with the length of the message. In any
practical case,the amount of information contained in a message must be estimated
using a limited set of models of the source. The utilization of a limited set of models
means that any estimate of the information in a message is an upper bound.

Computation

The theory of computation describes the operations that we perform on numbers,
including addition, subtraction, multiplication and division. More generally, a com-
putation is a sequence of operations each of which has a definite/unique/well-defined
result. The fundamental study of such operations is the theory of logic. Logical



