
Once the specific model and information that the recipient has about the source
enters into an evaluation of the information transfer, there is a certain and quite rea-
sonable degree of relativity in the amount of information transferred. An extreme ex-
ample would be if the recipient has already received a long message and knows the
same message is being repeated,then no new information is being transmitted.A per-
son who has memorized the Gettysburg Address will receive very little new informa-
tion upon hearing or reading it again. The prior knowledge is part of the model pos-
sessed by the recipient about the source.

Can we incorporate this in our definition of information? In every case where we
have measured the information of a message, we have made use of a model of the
source of the information. The underlying assumption is that this model is possessed
by the recipient. It should now be recognized that there is a certain amount of infor-
mation necessary to describe this model. As long as the amount of information in the
model is small compared to the amount of information in the message, we can say
that we have an absolute estimate of the information content of the message. As soon
as the information content of the model approaches that of the message itself, then
the amount of information transferred is sensitive to exactly what information is
known. It might be possible to develop a theory of information that incorporates the
information in the model,and thus to arrive at a more absolute measure of informa-
tion. Alternatively, it might be necessary to develop a theory that considers the recip-
ient and source more completely, since in actual communication between human be-
ings, both are nonergodic systems possessed of a large amount of information. There
is significant overlap of the information possessed by the recipient and the source.
Moreover, this common information is essential to the communication itself.

One effort to arrive at a universal definition of information content of a message
has been made by formally quantifying the information contained in models. The re-
sulting information measure, Kolmogorov complexity, is based on computation the-
ory discussed in the next section. While there is some success with this approach,two
difficulties remain. In order for a universal definition of information to be agreed
upon,models must still have an information content which is less than the message—
knowledge possessed must be smaller than that received. Also, to calculate the infor-
mation contained in a particular message is essentially impossible, since it requires
computational effort that grows exponentially with the length of the message. In any
practical case,the amount of information contained in a message must be estimated
using a limited set of models of the source. The utilization of a limited set of models
means that any estimate of the information in a message is an upper bound.

Computation

The theory of com p ut a ti on de s c ri bes the opera ti ons that we perform on nu m bers ,
i n cluding ad d i ti on , su btracti on , mu l ti p l i c a ti on and divi s i on . More gen era lly, a com-
p ut a ti on is a sequ en ce of opera ti ons each of wh i ch has a def i n i te / u n i qu e / well - def i n ed
re su l t . The fundamental stu dy of su ch opera ti ons is the theory of l ogi c . Logical

1.9
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operations do not necessarily act upon numbers, but rather upon abstract objects
called statements. Statements can be combined together using operators such as
AND and OR, and acted upon by the negation operation NOT. The theory of logic
and the theory of computation are at root the same. All computations that have
been conceived of can be constructed out of logical operations. We will discuss this
equivalence in some detail.

We also discuss a further equivalence, generally less well appreciated, between
computation and deterministic time evolution. The theory of computation strives to
describe the class of all possible discrete deterministic or causal systems.
Computations are essentially causal relationships. Computation theory is designed to
capture all such possible relationships. It is thus essential to our understanding not
just of the behavior of computers, or of human logic, but also to the understanding
of causal relationships in all physical systems. A counterpoint to this association of
computation and causality is the recognition that certain classes of deterministic dy-
namical systems are capable of the property known as universal computation.

One of the central findings of the theory of computation is that many apparently
different formulations of computation turn out to be equivalent. The sense in which
they are equivalent is that each one can simulate the other. In the early years of com-
putation theory, there was an effort to describe sets of operations that would be more
powerful than others. When all of them were shown to be equivalent it became gen-
erally accepted (the Church-Turing hypothesis) that there is a well-defined set of pos-
sible computations realized by any of several conceptual formulations. This has be-
come known as the theory of universal computation.

1.9.1 Propositional logic
Logic is the study of reasoning, inference and deduction. Propositional logic describes
the manipulation of statements that are either true or false. It assumes that there ex-
ists a set of statements that are either true or false at a par ticular time, but not both.
Logic then provides the possibility of using an assumed set of relationships between
the statements to determine the truth or falsehood of other statements.

For example,the statements Q1 = “I am standing” and Q2 = “I am sitting” may be
related by the assumption: Q1 is true implies that Q2 is not true. Using this assump-
tion,it is understood that a statement “Q1 AND Q2” must be false. The falsehood de-
pends only on the relationship between the two sentences and not on the particular
meaning of the sentences. This suggests that an abstract construction that describes
mechanisms of inference can be developed. This abstract construction is proposi-
tional logic.

Propositional logic is formed out of statements (propositions) that may be true
(T) or false (F), and operations. The operations are described by their actions upon
statements. Since the only concern of logic is the truth or falsehood of statements, we
can describe the operations through tables of truth values (truth tables) as follows.
NOT (^) is an operator that acts on a single statement (a unary operator) to form a
new statement. If Q is a statement then ^Q (read “not Q”) is the symbolic represen-
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tation of “It is not true that Q.” The truth of ^Q is directly (causally) related to the
truth of Q by the relationship in the table:

Q ^Q

T F (1.9.1)
F T

The value of the truth or falsehood of Q is shown in the left column and the corre-
sponding value of the truth or falsehood of ^Q is given in the right column.

Similarly, we can write the truth tables for the operations AND (&) and OR (|):

Q1 Q2 Q1&Q2

T T T
T F F (1.9.2)
F T F
F F F

Q1 Q2 Q1|Q2

T T T
T F T (1.9.3)
F T T
F F F

As the tables show, Q1&Q2 is only true if both Q1 is true and Q2 is true. Q1|Q2 is only
false if both Q1 is false and Q2 is false.

Propositional logic includes logical theorems as statements. For example, the
statement Q1 is true if and only if Q2 is true can also be written as a binary operation
Q1 ≡ Q2 with the truth table:

Q1 Q2 Q1 ≡ Q2

T T T
T F F (1.9.4)
F T F
F F T

Another binary operation is the statement Q1 implies Q2, Q1 ⇒ Q2. When this
statement is translated into propositional logic,there is a difficulty that is usually by-
passed by the following convention:

Q1 Q2 Q1 ⇒ Q2

T T T
T F F (1.9.5)
F T T
F F T

The difficulty is that the last two lines suggest that when the antecedent Q1 is false,the
implication is true, whether or not the consequent Q2 is true. For example, the
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statement “If I had wings then I could fly”is as true a statement as “If I had wings then
I couldn’t fly,” or the statement “If I had wings then potatoes would be flat.” The prob-
lem originates in the necessity of assuming that the result is true or false in a unique
way based upon the truth values of Q1 and Q2. Other information is not admissible,
and a third choice of “nonsense” or “incomplete information provided”is not allowed
within propositional logic. Another way to think about this problem is to say that
there are many operators that can be formed with definite outcomes. Regardless of
how we relate these operators to our own logical processes, we can study the system
of operators that can be formed in this way. This is a model, but not a complete one,
for human logic.Or, if we choose to define logic as described by this system,then hu-
man thought (as reflected by the meaning of the word “implies”) is not fully charac-
terized by logic (as reflected by the meaning of the operation “⇒”).

In addition to unary and binary operations that can act upon statements to form
other statements,it is necessary to have parentheses that differentiate the order of op-
erations to be performed. For example a statement ((Q1 ≡ Q2)&(^Q3)|Q1) is a series
of operations on primitive statements that starts from the innermost parenthesis and
progresses outward.As in this example,there may be more than one innermost paren-
thesis. To be definite, we could insist that the order of performing these operations is
from left to right. However, this order does not affect any result.

Within the context of propositional logic, it is possible to describe a systematic
mechanism for proving statements that are composed of primitive statements. There
are several conclusions that can be arrived at regarding a particular statement.A tau-
tology is a statement that is always true regardless of the truth or falsehood of its com-
ponent statements. Tautologies are also called theorems. A contradiction is a state-
ment that is always false. Examples are given in Question 1.9.1.

Question 1.9.1 Evaluate the truth table of:

a. (Q1 ⇒ Q2)|((^Q2)&Q1)

b. (^(Q1 ⇒ Q2))≡((^Q1)|Q2)

Identify which is a tautology and which is a contradiction.

Solution 1.9.1 Build up the truth table piece by piece:
a. Tautology:

Q1 Q2 Q1 ⇒ Q2 (^Q2)&Q1 (Q1 ⇒ Q2)|((^Q2)&Q1)

T T T F T
T F F T T
F T T F T
F F T F T

(1.9.6)
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b. Contradiction:

Q1 Q2 ^(Q1 ⇒ Q2) (^Q1)|Q2 (^(Q1 ⇒ Q2)) ≡ ((^Q1)|Q2)

T T F T F
T F T F F
F T F T F
F F F T F

(1.9.7) ❚

Question 1.9.2: Construct a theorem (tautology) from a contradiction.

Solution 1.9.2: By negation. ❚

1.9.2 Boolean algebra
Propositional logic is a particular example of a more general symbolic system known
as a Boolean algebra. Set theory, with the operators complement,union and intersec-
tion, is another example of a Boolean algebra. The formulation of a Boolean algebra
is convenient because within this more general framework a number of important
theorems can be proven. They then hold for propositional logic,set theory and other
Boolean algebras.

A Boolean algebra is a set of elements B={Q1,Q2, …}, a unary operator (^), and
two binary operators, for which we adopt the notation (+,•),that satisfy the follo wing
properties for all Q1, Q2, Q3 in B:

1. Closure: ^Q1, Q1+Q2, and Q1•Q2 are in B

2. Commutative law: Q1+Q2=Q2+Q1, and Q1•Q2=Q2•Q1

3. Distributive law: Q1•(Q2+Q3)=(Q1•Q2)+(Q1•Q3) and
Q1+(Q2•Q3)=(Q1+Q2)•(Q1+Q3)

4. Existence of identity elements, 0 and 1: Q1+0=Q1, and Q1•1=Q1

5. Complementarity law: Q1+(^Q1)=1 and Q1•(^Q1)=0

The statements of properties 2 through 5 consist of equalities. These equalities indi-
cate that the element of the set that results from operations on the left is the same as
the element resulting from operations on the right. Note particularly the second part
of the distributive law and the complementarity law that would not be valid if we in-
terpreted + as addition and • as multiplication.

Assumptions 1 to 5 allow the proof of additional properties as follows:

6. Associative property: Q1+(Q2+Q3)=(Q1+Q2)+Q3 and Q1•(Q2•Q3)=(Q1•Q2)•Q3

7. Idempotent property: Q1+Q1=Q1 and Q1•Q1=Q1

8. Identity elements are nulls: Q1+1=1 and Q1•0=0

9. Involution property: ^(^Q1)=Q1
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10. Absorption property: Q1+(Q1•Q2)=Q1 and Q1•(Q1+Q2)=Q1

11. DeMorgan’s Laws: ^(Q1+Q2)=(^Q1)•(^Q2) and ^(Q1•Q2)=(^Q1)+(^Q2)

To identify propositional logic as a Boolean algebra we use the set B={T,F} and
map the operations of propositional logic to Boolean operations as follows:(^ to ^),
(| to +) and (& to •). The identity elements are mapped:(1 to T) and (0 to F). The proof
of the Boolean properties for propositional logic is given as Question 1.9.3.

Question 1.9.3: Prove that the identification of propositional logic as a
Boolean algebra is correct.

Solution 1.9.3: (1) is trivial; (2) is the invariance of the truth tables of
Q1&Q2, Q1|Q2 to interchange of values of Q1 and Q2; (3) requires compari-
son of the t ruth tables of Q1|(Q2&Q3) and (Q1|Q2)&(Q1|Q3) (see below).
Comparison of the truth tables of Q1&(Q2|Q3) and (Q1&Q2)|(Q1&Q3) is
done similarly.

Q1 Q2 Q3 Q2&Q3 Q1|(Q2&Q3) Q1|Q2 Q1|Q3 (Q1|Q2)&(Q1|Q3)

T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

(1.9.8)

(4) requires verifying Q1&T=T, and Q1|F=F (see the truth tables for & and |
above);(5) requires constructing a truth table for Q|^Q and verifying that it
is always T (see below). Similarly, the truth table for Q&^Q shows that it is
always F.

Q ^Q Q|^Q

T F T (1.9.9) ❚
F T T

1.9.3 Completeness
Our obj ective is to show that an arbi tra ry truth tabl e , an arbi tra ry logical statem en t ,
can be con s tru cted out of on ly a few logical opera ti on s . Truth tables are also equ iva-
l ent to nu m erical functi on s — s pec i f i c a lly, f u n cti ons of bi n a ry va ri a bles that have bi-
n a ry re sults (bi n a ry functi ons of bi n a ry va ri a bl e s ) . This can be seen using the
Boolean repre s en t a ti on of T and F as {1,0} that is more familiar as a bi n a ry notati on
for nu m erical functi on s . For ex a m p l e , we can wri te the A N D and O R opera ti on s
( f u n cti ons) also as:
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Q1 Q2 Q1•Q2 Q1 Q2

1 1 1 1
1 0 0 1 (1.9.10)
0 1 0 1
0 0 0 0

Similarly for all truth tables,a logical operation is a binary function of a set of binary
variables. Thus,the ability to form an arbitrary truth table from a few logical opera-
tors is the same as the ability to form an arbitrary binary function of binary variables
from these same logical operators.

To prove this ability, we use the properties of the Boolean algebra to systemati-
cally discuss truth tables. We first construct an alternative Boolean expression for
Q1+Q2 by a procedure that can be generalized to arbitrary truth tables.The procedure
is to look at each line in the truth table that contains an outcome of 1 and write an ex-
pression that provides unity for that line only. Then we combine the lines to achieve
the desired table. Q1•Q2 is only unity for the first line,as can be seen from its column.
Similarly, Q1•(^Q2) is unity for the second line and (^Q1)•Q2 is unity for the third
line. Using the properties of + we can then combine the terms together in the form:

Q1•Q2+Q1•(^Q2)+(^Q1)•Q2 (1.9.11)

Using associative and identity properties, this gives the same result as Q1+Q2.
We have replaced a simple expression with a much more complicated expression

in Eq.(1.9.11). The motivation for doing this is that the same procedure can be used
to represent any truth table. The general form we have constructed is called the dis-
junctive normal form. We can construct a disjunc tive normal representation for an
arbitrary binary function of binary variables. For example, given a specific binary
function of binary variables, f (Q1,Q2,Q3), we construct its truth table, e.g.,

Q1 Q2 Q3 f (Q1,Q2,Q3)

1 1 1 1
1 0 1 0
0 1 1 1
0 0 1 0 (1.9.12)
1 1 0 0
1 0 0 1
0 1 0 0
0 0 0 0

The disjunctive normal form is given by:

f (Q1,Q2,Q3)=Q1•Q2•Q3+(^Q1)•Q2•Q3+Q1•(^Q2)•(^Q3) (1.9.13)

as can be verified by inspection. An analogous construction can represent any binary
function.

We have demonstrated that an arbitrary truth table can be constructed out of the
three operations (^,+, •). We say that these form a complete set of operations. Since
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there are 2n lines in a truth table formed out of n binary variables, there are 22 n
pos-

sible functions of these n binary variables. Each is specified by a particular choice of
the 2n possible outcomes. We have achieved a dramatic simplification by recognizing
that all of them can be written in terms of only three operators. We also know that at
most (1/2)n2n (^) operations, (n − 1) 2n (•) operations and 2n − 1  (+) operations are
necessary. This is the number of operations needed to represent the identity function
1 in disjunctive normal form.

It is possible to further simplify the set of operations required. We can eliminate
either the + or the • operations and still have a complete set. To prove this we need only
display an expression for either of them in terms of the remaining operations:

Q1•Q2=^((^Q1)+(^Q2))
(1.9.14)

Q1+Q2=^((^Q1)•(^Q2))

Question 1.9.4: Verify Eq. (1.9.14).

Solution 1.9.4: They may be verified using DeMorgan’s Laws and the invo-
lution property, or by construction of the truth tables, e.g.:

Q1 Q2 ^Q1 ^Q2 Q1•Q2 (^Q1) (^Q2)

1 1 0 0 1 0
1 0 0 1 0 1
0 1 1 0 0 1
0 0 1 1 0 1

(1.9.15) ❚

It is possible to go one step further and identify binary operations that can rep-
resent all possible functions of binary variables. Two possibilities are the NAND (&̂)
and NOR (|̂) operations defined by:

Q1 &̂ Q2=^(Q1&Q2) → ^(Q1•Q2)
(1.9.16)

Q1 |̂ Q2=^(Q1|Q2) → ^(Q1+Q2)

Both the logical and Boolean forms are written above. The truth tables of these oper-
ators are:

Q1 Q2 ^(Q1•Q2) ^(Q1 Q2)

1 1 0 0
1 0 1 0 (1.9.17)
0 1 1 0
0 0 1 1

We can prove that each is complete by itself (capable of representing all binary func-
tions of binary variables) by showing that they are capable of representing one of the
earlier complete sets.We prove the case for the NAND operation and leave the NOR op-
eration to Question 1.9.5.
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^Q1=^(Q1•Q1)=Q1 &̂ Q1
(1.9.18)

(Q1•Q2)=^(^(Q1•Q2))=^(Q1 &̂ Q2)=(Q1 &̂ Q2)  &̂ (Q1 &̂ Q2)

Question 1.9.5: Verify completeness of the NOR operation.

Solution 1.9.5: We can use the same formulas as in the proof of the com-
pleteness of NAND by replacing • with + and  &̂ with |̂ everywhere. ❚

1.9.4 Turing machines
We have found that logical operators can represent any binary function of binary vari-
ables. This means that all well-defined mathematical operations on integers can be
represented in this way. One of the implications is that we might make machines out
of physical elements, each of which is capable of performing a Boolean operation.
Such a machine would calculate a mathematical function and spare us a tedious task.
We can graphically display the operations of a machine performing a series of
Boolean operations as shown in Fig. 1.9.1. This is a simplified symbolic form similar
to forms used in the design of computer logic circuits.

By looking carefully at Fig. 1.9.1 we see that there are several additional kinds of
actions that are necessary in addition to the elementary Boolean operation. These ac-
tions are indicated by the lines that might be thought of as wires. One action is to
transfer information from the location where it is input into the system, to the place
where it is used. The second is to duplicate the information. Duplication is repre-
sented in the figure by a branching of the lines. The branching enables the same
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Q1| Q2
^

Q1& Q2

Figure 1.9.1 Graphical representation of Boolean operations. The top figure shows a graph-
ical element representing the NOR operation Q1

^
|Q2 = ^(Q1|Q2). In the bottom figure we com-

bine several operations together with lines (wires) indicating input, output, data duplication
and transfer to form the AND operation, (Q1

^
|Q1)

^
|(Q2

^
|Q2) = (^Q1)

^
|(^Q2) = Q1&Q2. This equation

may be used to prove completeness of the NOR operation. ❚
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information to be used in more than one place. Additional implicit actions involve
timing, because the representation makes an assumption that time causes the infor-
mation to be moved and acted upon in a sequence from left to right. It is also neces-
sary to have mechanisms for input and output.

The kind of mathematical machine we just described is limited to performing
one prespecified function of its inputs. The process of making machines is time con-
suming. To physically rearrange components to make a new function would be in-
convenient. Thus it is useful to ask whether we might design a machine such that part
of its input could include a specification of the mathematical operation to be per-
formed. Both information describing the mathematical function,and the numbers on
which it is to be performed, would be encoded in the input which could be described
as a string of binary characters.

This discussion suggests that we should systematically consider the properties/
qualities of machines able to perform computations. The theory of computation is a
self-consistent discussion of abstract machines that perform a sequence of prespeci-
fied well-defined operations. It extends the concept of universality that was discussed
for logical operations. While the theory of logic determined that all Boolean functions
could be represented using elementary logic operations, the theory of computation
endeavors to establish what is possible to compute using a sequence of more general
elementary operations. For this discussion many of the practical matters of computer
design are not essential. The key question is to establish a relationship between ma-
chines that might be constructed and mathematical functions that may be computed.
Part of the problem is to define what a computation is.

There are several alternative models of computation that have been shown to be
equivalent in a formal sense since each one of them can simulate any other. Turing in-
troduced a class of machines that represent a particular model of computation.
Rather than maintaining information in wires, Turing machines (Fig. 1.9.2) use a
storage device that can be read and written to. The storage is represented as an infi-
nite one-dimensional tape marked into squares. On the tape can be written charac-
ters, one to a square. The total number of possible characters, the alphabet, is finite.
These characters are often taken to be digits plus a set of markers (delimiters). In ad-
dition to the characters,the tape squares can also be blank. All of the tape is blank ex-
cept for a finite number of nonblank places. Operations on the tape are performed by
a roving read-write head that has a sp ecified (finite) number of internal storage ele-
ments and a simple kind of program encoded in it.We can treat the program as a table
similar to the tables discussed in the context of logic. The table operation acts upon
the value of the tape at the current location of the head,and the value of storage ele-
ments within the read head. The result of an operation is not just a single binary value.
Instead it corresponds to a change in the state of the tape at the current location
(write),a change in the internal memory of the head,and a shift of the location of the
head by one square either to the left or to the right.

We can also think about a Turing machine (TM) as a dynamic system. The inter-
nal table does not change in time. The internal state s(t),the current location l(t),the
current character a(t) and the tape c(t) are all functions of time. The table consists of
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a set of instructions or rules of the form { ,s′,a′,s,a} corresponding to a deterministic
transition matrix. s and a are the current internal state and current tape character re-
spectively. s′ and a′ are the new internal state and character. is the move to be made,
either right or left (R or L).

Using either conceptual model, the TM starts from an initial state and location
and a specified tape. In each time interval the TM head performs the following oper-
ations:

1. Read the current tape character

2. Find the instruction that corresponds to the existing combination of (s,a)

3. Change the internal memory to the corresponding s′
4. Write the tape with the corresponding character a′
5. Move the head to the left or right as specified by 

When the TM head reaches a special internal state known as the halt state, then the
outcome of the computation may be read from the tape. For simplicity, in what fol-
lows we will indicate entering the halt state by a move = H which is to halt.

The best way to understand the operation of a TM is to construct particular
tables that perform particular actions (Question 1.9.6). In addition to logical
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R   s2 1 , s1 1

L   s1 1 , s1 0

R   s1 1 , s2 0

H   s2 1 , s2 1

0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0

s

Figure 1.9.2 Turing’s model of computation — the Turing machine (TM) — consists of a tape
divided into squares with characters of a finite alphabet written on it. A roving “head” indi-
cated by the triangle has a finite number of internal states and acts by reading and writing
the tape according to a prespecified table of rules. Each rule consists of a command to read
the tape, write the tape, change the internal state of the TM head and move either to the left
or right. A simplified table is shown consisting of several rules of the form { , s′, a′, s, a}
where a and a′ are possible tape characters, s and s′ are possible states of the head and is
a movement of the head right (R), left (L) or halt (H). Each update the TM starts by finding
the rule { , s′, a′, s, a} in the table such that a is the character on the tape at the current lo-
cation of the head, and s is its current state. The tape is written with the corresponding a′
and the state of the TM head is changed to s′. Then the TM head moves according to the cor-
responding right or left. The illustration simplifies the characters to binary digits 0 and 1
and the states of the TM head to s1 and s2. ❚
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operations, the possible actions include moving and copying characters.
Constructing particular actions using a TM is tedious, in large part because the
movements of the head are limited to a single displacement right or left. Actual
computers use direct addressing that enables access to a particular storage location
in its memory using a number (address) specifying its location. TMs do not gener-
ally use this because the tape is arbitrarily long, so that an address is an arbitrarily
large number, requiring an arbitrarily large storage in the internal state of the head.
Infinite storage in the head is not part of the computational model.

Question 1.9.6 The following TM table is designed to move a string of
binary characters (0 and 1) that are located to the left of a special marker

M to blank squares on the tape to the right of the M and then to stop on the
M. Blank squares are indicated by B. The internal states of the head are indi-
cated by s1, s2 . . . These are not italicized, since they are values rather than
variables. The movements of the head right and left are indicated by R and
L. As mentioned above, we indicate entering the halt state by a movement H.
Each line has the form { , s′, a′, s, a}.

Read over the program and convince yourself that it does what it is sup-
posed to. Describe how it works. The TM must start from state s1 and must
be located at the leftmost nonblank character. The line numbering is only for
convenience in describing the TM, and has no role in its operation.

1. R s2 B s1 0
2. R s3 B s1 1
3. R s2 0 s2 0
4. R s2 1 s2 1
5. R s2 M s2 M
6. R s3 0 s3 0
7. R s3 1 s3 1
8. R s3 M s3 M (1.9.19)
9. L s4 0 s2 B

10. L s4 1 s3 B
11. L s4 0 s4 0
12. L s4 1 s4 1
13. L s4 M s4 M
14. R s1 B s4 B
15. H s1 M s1 M

Solution 1.9.6 This TM works by (lines 1 or 2) reading a nonblank char-
acter (0 or 1) into the internal state of the head; 0 is represented by s2 and 1
is represented by s3. The character that is read is set to a blank B. Then the
TM moves to the right, ignoring all of the tape characters 0, 1 or M (lines 3
through 8) until it reaches a blank B. It writes the stored character (lines 9 or
10), changing its state to s4. This state specifies moving to the left,ignoring
all characters 0,1 or M (lines 11 through 13) until it reaches a blank B. Then
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(line 14) it moves one step right and resets its state to s1. This starts the pro-
cedure from the beginning. If it encounters the marker M in the state s1 in-
stead of a character to be copied, then it halts (line 15). ❚

Since each character can also be represented by a set of other characters (i.e.,2 in
binary is 10), we can allow the TM head to read and write not one but a finite pre-
specified number of characters without making a fundamental change. The following
TM, which acts upon pairs of characters and moves on the tape by two characters at
a time, is the same as the one given in Question 1.9.6.

1. 01 01 00 00 01
2. 01 11 00 00 11
3. 01 01 01 01 01
4. 01 01 11 01 11
5. 01 01 10 01 10
6. 01 11 01 11 01
7. 01 11 11 11 11
8. 01 11 10 11 10 (1.9.20)
9. 10 10 01 01 00

10. 10 10 11 11 00
11. 10 10 01 10 01
12. 10 10 11 10 11
13. 10 10 10 10 10
14. 01 00 00 10 00
15. 00 00 10 00 10

The particular choice of the mapping from characters and internal states onto the
binary representation is not unique. This choice is characterized by using the left and
right bits to represent different aspects. In columns 3 or 5, which represent the tape
characters, the right bit represents the type of element (marker or digit), and the left
represents which element or marker it is: 00 represents the blank B, 10 represents M,
01 represents the digit 0,and 11 represents the digit 1. In columns 2 or 4, which rep-
resent the state of the head,the states s1 and s4 are represented by 00 and 10, s2 and s3

are represented by 01 and 11 respectively. In column 1, moving right is 01, left is 10,
and halt is 00.

The architecture of a TM is very general and allows for a large variety of actions
using complex tables. However, all TMs can be simulated by transferring all of the re-
sponsibility for the table and data to the tape.A TM that can simulate all TMs is called
a universal Turing machine (UTM). As with other TMs,the responsibility of arrang-
ing the information lies with the “programmer.” The UTM works by representing the
table,current state,and current letter on the UTM tape. We will describe the essential
concepts in building a UTM but will not explicitly build one.

The UTM acts on its own set of characters with its own set of internal states. In
order to use it to simulate an arbitrary TM, we have to represent the TM on the tape
of the UTM in the characters that the UTM can operate on. On the UTM tape, we
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must be able to represent four types of entities: a TM character, the state of the TM
head, the movement to be taken by the TM head, and markers that indicate to the
UTM what is where on the tape. The markers are special to the UTM and must be
carefully distinguished from the other three. For later reference, we will build a par-
ticular type of UTM where the tape can be completely represented in binary.

The UTM tape has three parts,the part that represents the table of the TM,a work
area,and the part that represents the tape of the TM (Fig. 1.9.3). To represent the tape
and table of a particular but arbitrary TM, we start with a binary representation of its
alphabet and of its internal states

a1 → 00000, a2 → 00001, a3 → 00010, …
(1.9.21)

s1 → 000, s2 → 001, …

where we keep the left zeros, as needed for the number of bits in the longest binary
number. We then make a doubled binary representation like that used in the previous
example, where each bit becomes two bits with the low order bit a 1. The doubled bi-
nary notation will enable us to distinguish between UTM markers and all other enti-
ties on the tape. Thus we have:

a1 → 01 01 01 01 01, a2 → 01 01 01 01 11, a3 → 01 01 01 11 01, …
(1.9.22)

s1 → 01 01 01, s2 → 01 01 11, …

These labels of characters and states are in a sense arbitrary, since the transition table
is what gives them meaning.

We also encode the movement commands. The movement commands are not ar-
bitrary, since the UTM must know how to interpret them.We have allowed the TM to
displace more than one character, so we must encode a set of movements such as R1,
L1, R2, L2, and H. These correspond respectively to moving one character right, one
character left, two characters right, two characters left, and entering the halt state.
Because the UTM must understand the move that is to be made, we must agree once
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and for all on a coding of these movements. We use the lowest order bit as a direction
bit (1 Right, 0 Left) and the rest of the bits as the number of displacements in binary

R1 → 011, R2 → 101, …,

L1 → 010, L2 → 100, …, (1.9.23)

H → 000 or 001

The doubled binary representation is as before:each bit becomes two bits with the low
order bit a 1,

R1 → 01 11 11 , R2 → 11 01 11 , …,

L1 → 01 11 01 , L2 → 11 01 01 , …, (1.9.24)

H → 01 01 01 or 01 01 11

Care is necessary in the UTM design because we do not know in advance how many
types of TM moves are possible.We also don’t know how many characters or internal
states the TM has. This means that we don’t know the length of their binary repre-
sentations.

We need a number of markers that indicate to the UTM the beginning and end
of encoded characters, states and movements described above. We also need markers
to distinguish different regions of the tape. A sufficient set of markers are:

M1—the beginning of a TM character,

M2—the beginning of a TM internal state,

M3—the beginning of a TM table entry, which is also the beginning of a move-
ment command,

M4—a separator between the TM table and the workspace,

M5—a separator between the workspace and the TM tape,

M6—the beginning of the current TM character (the location of the TM head),

M7—the identified TM table entry to be used in the current step, and

B—the blank, which we include among the markers.

Depending on the design of the UTM, these markers need not all be distinct. In any
case, we encode them also in binary

B → 000, M1 → 001, M2 → 010, … (1.9.25)

and then doubled binary form where the second character is now zero:

B → 00 00 00, M1 → 00 00 10, M2 → 00 10 00, … (1.9.26)

We are now in a position to encode both the tape and table of the TM on the tape
of the UTM. The representation of the table consists of a sequence of representations
of the lines of the table, L1L2..., where each line is represented by the doubled binary
representation of

M3 M2 s′ M1 a′ M2 s M1a (1.9.27)

C o m p u t a t i o n 249

# 29412 Cust: AddisonWesley Au: Bar-Yam Pg. No. 249
Title: Dynamics Complex Systems Short / Normal / Long

01adBARYAM_29412  3/10/02 10:17 AM  Page 249



The markers are definite but the characters and states and movements correspond to
those in a particular line in the table.The UTM representation of the tape of the TM,
a1a2 . . ., is a doubled binary representation of

M1 a1 M1 a2 M1 a3 . . . (1.9.28)

The workspace starts with the character M4 and ends with the character M5. There is
room enough for the representation of the current TM machine state,the current tape
character and the movement command to be executed. At a particular time in execu-
tion it appears as:

M4 M2 s M1 a M5 (1.9.29)

We describe in general terms the operation of the UTM using this representation
of a TM. Before execution we must indicate the starting location of the TM head and
its initial state. This is done by changing the corresponding marker M1 to M6 (at the
UTM tape location to the left of the character corresponding to the initial location of
the TM), and the initial state of the TM is encoded in the workspace after M2.

The UTM starts from the leftmost nonblank character of its tape. It moves to the
right until it encounters M6. It then copies the character after M6 into the work area
after M1. It compares the values of (s,a) in the work area with all of the possible (s,a)
pairs in the transition table pairs until it finds the same pair. It marks this table entry
with M7. The corresponding s′ from the table is copied into the work area after M2.
The corresponding a′ is copied to the tape after M6. The corresponding movement
command is copied to the work area after M4. If the movement command is H the
TM halts. Otherwise, the marker M6 is moved according to the value of . It is moved
one step at a time (i.e.,the marker M6 is switched with the adjacent M1) while decre-
menting the value of the digits of (except the rightmost bit) and in the direction
specified by the rightmost bit.When the movement command is decremented to zero,
the TM begins the cycle again by copying the character after M6 into the work area.

There is one detail we have overlooked: the TM can write to the left o f its non-
blank characters. This would cause problems for the UTM we have designed,since to
the left of the TM tape representation is the workspace and TM table. There are vari-
ous ways to overcome this difficulty. One is to represent the TM tape by folding it
upon itself and interleaving the characters.Starting from an arbitrary location on the
TM tape we write all characters on the UTM tape to the right of M5 , so that odd char-
acters are the TM tape to the right, and even ones are the TM tape to the left.
Movements of the M6 marker are doubled, and it is reflected (bounces) when it en-
counters M5.

A TM is a dynamic system. We can reformulate Turing’s model of computation
in the form of a cellular automaton (Section 1.5) in a way that will shed some light on
the dynamics that are being discussed. The most direct way to do this is to make an
automaton with two adjacent tapes. The only information in the second strip is a sin-
gle nonblank character at the location of the head that represents its internal state.
The TM update is entirely contained within the update rule of the automaton. This
update rule may be constructed so that it acts at every point in the space, but is en-
abled by the nonblank character in the adjacent square on the second tape. When the
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dynamics reaches a steady state (it is enough that two successive states of the au-
tomaton are the same),the computation is completed. If desired we could reduce this
CA to one tape by placing each pair of squares in the two tapes adjacent to each other,
interleaving the two tapes. While a TM can be represented as a CA,any CA with only
a finite number of active cells can be updated by a Turing machine program (it is com-
putable). There are many other CA that can be programmed by their initial state to
perform computations. These can be much simpler than using the TM model as a
starting point. One example is Conway’s Game of Life, discussed in Section 1.5.Like
a UTM, this CA is a universal computer—any computation can be performed by
starting from some initial state and looking at the final steady state for the result.

When we consider the relationship of computation theory to dynamic systems,
there are some intentional restrictions in the theory that should be recognized. The
conventional theory of computation describes a single computational unit operating
on a character string formed from a finite alphabet of characters. Thus, computation
theory does not describe a continuum in space,an infinite array of processors, or real
numbers. Computer operations only mimic approximately the formal definition of
real numbers. Since an arbitrary real number requires infinitely many digits to spec-
ify, computations upon them in finite time are impossible. The rejection by compu-
tation theory of operations upon real numbers is not a trivial one. It is rooted in fun-
damental results of computation theory regarding limits to what is inherently
possible in any computation.

This model of computation as dynamics can be summarized by saying that a
computation is the steady-state result of a deterministic CA with a finite alphabet (fi-
nite number of characters at each site) and finite domain update rule.One of the char-
acters (the blank or vacuum) must be such that it is unchanged when the system is
filled with these characters. The space is infinite but the conditions are such that all
space except for a finite region must be filled with the blank character.

1.9.5 Computability and the halting problem
The construction of a UTM guarantees that if we know how to perform a particular
operation on numbers, we can program a UTM to perform this computation.
However, if someone gives you such a program––can you determine what it will com-
pute? This seemingly simple question turns out to be at the core of a central problem
of logic theory. It turns out that it is not only difficult to determine what it will com-
pute,it is,in a formal sense that will be described below, impossible to figure out if it
will compute anything at all. The requirement that it will compute something is that
eventually it will halt. By halting, it declares its computation completed and the an-
swer given. Instead of halting, it might loop forever or it might continue to write on
ever larger regions of tape. To say that we can determine whether it will compute
something is equivalent to saying that it will eventually halt. This is called the halting
problem. How could we determine if it would halt? We have seen above how to rep-
resent an arbitrary TM on the tape of a particular TM. Consistent with computation
theory, the halting problem is to construct a special TM, TH, whose input is a de-
scription of a TM and whose output is a single bit that specifies whether or not the
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TM will halt. In order for this to make sense,the program TH must itself halt. We can
prove by contradiction that this is not possible in general, and therefore we say that
the halting problem is not computable. The proof is based on constructing a para-
doxical logical statement of the form “This statement is false.”

A proof starts by assuming we have a TM called TH that accepts as input a tape
representing a TM Y and its tape y. The output, which can be represented in func-
tional form as TH (Y, y), is always well-defined and is either 1 or 0 representing the
statement that the TM Y halts on y or doesn’t halt on y respectively. We now construct
a logical contradiction by constructing an additional TM based on TH. First we con-
sider TH (Y,Y), which asks whether Y halts when acting on a tape representing itself.
We design a new TM TH 1 that takes only Y as input,copies it and then acts in the same
way as TH. So we have

TH1(Y) = TH (Y,Y) (1.9.30)

We now define a TM TH2 that is based on TH1 but whenever TH1 gives the answer
0 it gives the answer 1,and whenever TH1 gives the answer 1 it enters a loop and com-
putes forever. A moment’s meditation shows that this is possible if we have TH1.
Applying TH 2 to itself then gives us the contradiction, since TH2(TH2) gives 1 if

TH1(TH2) = TH(TH2,TH2) = 0 (1.9.31)

By definition of TH this means that TH 2(TH 2) does not halt, which is a contradiction.
Alternatively, TH2(TH 2) computes forever if

TH1(TH2) = TH(TH2,TH2) = 1

by definition of TH this means that TH2(TH 2)  halts, which is a contradiction.
The noncomputability of the halting problem is similar to Gödel’s theorem and

other results denying the completeness of logic, in the sense that we can ask a ques-
tion about a logical construction that cannot be answered by it.Gödel’s theorem may
be paraphrased as: In any axiomatic formulation of number theory (i.e.,integers),it
is possible to write a statement that cannot be proven T or F. There has been a lot of
discussion about the philosophical significance of these theorems.A basic conclusion
that may be reached is that they describe something about the relationship of the fi-
nite and infinite. Turing machines can be represented,as we have seen, by a finite set
of characters. This means that we can enumerate them, and they correspond one-to-
one to the integers. Like the integers, there are (countably) infinitely many of them.
Gödel’s theorem is part of our understanding of how an infinite set of numbers must
be described. It tells us that we cannot describe their properties using a finite set of
statements. This is appealing from the point of view of information theory since an
arbitrary integer contains an arbitrarily large amount of information. The noncom-
putability of the halting problem tells us more specifically that we can ask a question
about a system that is described by a finite amount of information whose answer (in
the sense of computation) is not contained within it.We have thus made a vague con-
nection between computation and information theory. We take this connection one
step further in the following section.
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1.9.6 Computation and information in brief
One of our objectives will be to relate computation and information. We therefore
ask, Can a calculation produce information? Let us think about the results of a TM
calculation which is a string of characters—the nonblank characters on the output
tape. How much information is necessary to describe it? We could describe it directly,
or use a Markov model as in Section 1.8. However, we could also give the input of the
TM and the TM description, and this would be enough information to enable us to
obtain the output by computation. This description might contain more or fewer
characters than the direct description of the output. We now return to the problem of
defining the information content of a string of characters. Utilizing the full power of
computation, we can define this as the length of the shortest possible input tape for a
UTM that gives the desired character string as its output. This is called the algorith-
mic (or Kolmogorov) complexity of a character string. We have to be careful with the
definition, since there are many different possible UTM. We will discuss this in
greater detail in Chapter 8. However, this discussion does imply that a calculation
cannot produce information. The information present at the beginning is sufficient
to obtain the result of the computation. It should be understood, however, that the
information that seems to us to be present in a result may be larger than the original
information unless we are able to reconstruct the starting point and the TM used for
the computation.

1.9.7 Logic, computation and human thought
Both logic and computation theory are designed to capture aspects of human
thought. A fundamental question is whether they capture enough of this process—
are human beings equivalent to glorified Turing machines? We will ask this question
in several ways throughout the text and arrive at various conclusions,some of which
support this identification and some that oppose it.One way to understand the ques-
tion is as one of progressive approximation. Logic was originally designed to model
human thought. Computation theory, which generalizes logic, includes additional
features not represented in logic. Computers as we have defined them are instruments
of computation. They are given input (information) specifying both program and
data and provide well-defined output an indefinite time later. One of the features that
is missing from this kind of machine is the continuous input-output interaction with
the world characteristic of a sensory-motor system. An appropriate generalization of
the Turing machine would be a robot. As it is conceived and sometimes realized,a ro-
bot has both sensory and motor capabilities and an embedded computer. Thus it has
more of the features characteristic of a human being. Is this sufficient, or have we
missed additional features?

Logic and computation are often contrasted with the concept of creativity. One
of the central questions about computers is whether they are able to simulate creativ-
ity. In Chapter 3 we will produce a model of creativity that appears to be possible to
simulate on a computer. Hidden in this model, however, is a need to use random
numbers. This might seem to be a minor problem, since we often use computers to
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generate random numbers. However, computers do not actually generate random-
ness,they generate pseudo-random numbers. If we recall that randomness is the same
as information, by the discussion in the previous section,a computer cannot gener-
ate true randomness.A Turing machine cannot generate a result that has more infor-
mation than it is given in its initial data. Thus creativity appears to be tied at least in
part to randomness, which has often been suggested, and this may be a problem for
conventional computers. Conceptually, this problem can be readily resolved by
adding to the description of the Turing machine an infinite random tape in addition
to the infinite blank tape. This new system appears quite similar to the original TM
specification.A reasonable question would ask whether it is really inherently differ-
ent. The main difference that we can ascertain at this time is that the new system
would be capable of generating results with arbitrarily large information content,
while the original TM could not. This is not an unreasonable distinction to make be-
tween a creative and a logical system. There are still key problems with understanding
the practical implications of this distinction.

The subtle ty of this discussion increases when we consider that one branch of
theoretical computer science is based on the commonly believed assumption that
there exist functions that are inherently difficult to invert—they can only be inverted
in a time that grows exponentially with the length of the nonblank part of the tape.
For all practical purposes, they cannot be inverted, because the estimated lifetime of
the universe is insufficient to invert such functions. While their existence is not
proven, it has been proven that if they do exist, then such a function can be used to
generate a string of characters that, while not random, cannot be distinguished from
a random string in less than exponential time. This would suggest that there can be
no practical difference between a TM with a random tape,and one without. Thus,the
possibility of the existence of noninvertible functions is intimately tied to questions
about the relationship between TM, randomness and human thought.

1.9.8 Using computation and information to describe the
real world

In this section we review the fundamental relevance of the theories of computation
and information in the real world. This relevance ultimately arises from the proper-
ties of observations and measurements.

In our ob s erva ti ons of the worl d , we find that qu a n ti ties we measu re va ry. In deed ,
wi t h o ut va ri a ti on there would be no su ch thing as an ob s erva ti on . Th ere are va ri a ti on s
over time as well as over space . Our intell ectual ef fort is ded i c a ted to cl a s s i f ying or un-
derstanding this va ri a ti on . To con c reti ze the discussion , we con s i der ob s erva ti ons of a
va ri a ble s wh i ch could be as a functi on of time s(t) or of s p ace s(x) . Even though x or
t m ay appear con ti nu o u s , our ob s erva ti ons may of ten be de s c ri bed as a finite discrete
s et {si} . One of the cen tral (met a ) ob s erva ti ons abo ut the va ri a ti on in va lue of {si} is that
s om etimes the va lue of the va ri a ble si can be inferred from , is correl a ted wi t h , or is not
i n depen dent from its va lue or va lues at some other time or po s i ti on sj .

These concepts have to do with the relatedness of si to sj . Why is this important?
The reason is that we would like to know the value of si without having to observe it.
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We can understand this as a problem in prediction—to anticipate events that will oc-
cur. We would also like to know what is located at unobserved positions in space;e.g.,
around the corner. And even if we have observed something, we do not want to have
to remember all observations we make. We could argue more fundamentally that
knowledge/information is important only ifprediction is possible. There would be no
reason to remember past observations if they were uncorrelated with anything in the
future. If correlations enable prediction,then it is helpful to store information about
the past. We want to store as little as possible in order to make the prediction. Why?
Because storage is limited, or because accessing the right information requires a
search that takes time. If a search takes more time than we have till the event we want
to predict, then the information is not useful. As a corollary (from a simplified utili-
tarian point of view), we would like to retain only information that gives us the best,
most rapid prediction, under the most circumstances, for the least storage.

Inference is the process of logic or computation. To be able to infer the state of a
variable si means that we have a definite formula f(sj) that will g ive us the value o f si

with complete certainty from a knowledge of sj . The theory of computation describes
what functions f are possible. If the index i corresponds to a later time than j we say
that we can predict its value. In addition to the value of sj we need to know the func-
tion f in order to predict the value of si. This relationship need not be from a single
value sj to a single value si. We might need to know a collection of values {sj } in order
to obtain the value of si from f ({sj }).

As part of our experience of the world, we have learned that observations at a par-
ticular time are more closely related to observations at a previous time than observa-
tions at different nearby locations. This has been summarized by the principle of
causality. Causality is the ability to determine what happens at one time from what
happened at a previous time. This is more explicitly stated as microcausality—what
happens at a particular time and place is related to what happened at a previous time
in its immediate vicinity. Causality is the principle behind the notion of determinism,
which suggests that what occurs is determined by prior conditions. One of the ways
that we express the relationship between system observations over time is by conser-
vation laws. Conservation laws are the simplest form of a causal relationship.

Correlation is a looser relationship than inference. The statement that values si

and sj are correlated implies that even if we cannot tell exactly what the value si is from
a knowledge of sj , we can describe it at least partially. This partial knowledge may also
be inherently statistical in the context of an ensemble of values as discussed below.
Correlation often describes a condition where the values si and sj are similar. If they
are opposite, we might say they are anticorrelated. However, we sometimes use the
term “correlated”more generally. In this case,to say that si and sj are correlated would
mean that we can construct a function f (sj) which is close to the value of si but not ex-
actly the same. The degree of correlation would tell us how close we expect them to
be. While correlations in time appear to be more central than correlations in space,
systems with interactions have correlations in both space and time.

Concepts of relatedness are inherently of an ensemble nature. This means that
they do not refer to a particular value si or a pair of values (si, sj) but rather to a
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collection of such values or pairs. The ensemble nature of relationships is often more
explicit for correlations, but it also applies to inference. This ensemble nature is hid-
den by func tional terminology that describes a relationship between particular val-
ues. For example, when we say that the temperature at 1:00 P.M. is correlated with the
temperature at 12:00 P.M., we are describing a relationship between two temperature
values. Implicitly, we are describing the collection of all pairs of temperatures on dif-
ferent days or at different locations. The set of such pairs are analogs. The concept of
inference also generally makes sense only in reference to an ensemble. Let us assume
for the moment that we are discussing only a single value si . The statement of infer-
ence would imply that we can obtain si as the value f(sj). For a single value,the easiest
way (requiring the smallest amount of information) to specify f (sj)  would be to spec-
ify si. We do not gain by using inference for this single case. However, we can gain if
we know that, for example,the velocity of an object will remain the same if there are
no forces upon it. This describes the velocity v(t) in terms of v(t ′) of any one object
out of an ensemble of objects. We can also gain from inference if the function f (sj)
gives a string of more than one si.

The notion of independence is the opposite of inference or correlation. Two val-
ues si and sj are independent if there is no way that we can infer the value of one from
the other, and if they are not correlated. Randomness is similar to independence. The
word “independent” is used when there is no correlation between two observations.
The word “random” is stronger, since it means that there is no correlation between an
observed value and anything else. A random process,like a sequence of coin tosses,is
a sequence where each value is independent of the others. We have seen in Section 1.8
that randomness is intimately related with information. Random processes are un-
predictable,therefore it makes no sense for us to try to accumulate information that
will help predict it. In this sense, a random process is simple to describe. However,
once a random process has occurred,other events may depend upon it. For example,
someone who wins a lottery will be significantly affected by an event presumed to be
random. Thus we may want to remember the results of the random process after it
occurs. In this case we must remember each value. We might ask, Once the random
process has occurred, can we summarize it in some way? The answer is that we can-
not. Indeed, this property has been used to define randomness.

We can abstract the problem of prediction and description of observations to the
problem of data compression. Assume there are a set of observations {si} for which we
would like to obtain the shortest possible description from which we can reconstruct
the complete set of observations. If we can infer one value from another, then the set
might be compressed by eliminating the inferable values. However, we must make
sure that the added information necessary to describe how the inference is to be done
is less than the information in the eliminated values. Correlations also enable com-
pression. For example,let us assume that the values are biased ON with a probability
P(1) = .999 and OFF with a probability P (−1) = 0.001. This means that one in a thou-
sand values is OFF and the others are ON. In this case we can remember which ones
are OFF rather than keeping a list of all of the values.We would say they are ON except
for numbers 3, 2000,2403,5428, etc. This is one way of coding the information. This
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method of encoding has a problem in that the numbers representing the locations of
the OFF values may become large. They will be correlated because the first few digits
of successive locations will be the same (…,431236,432112,434329,…). We can fur-
ther reduce the list if we are willing to do some more processing, by giving the inter-
vals between successive OFF values rather than the absolute numbers of their location.

Ultimately, when we have reached the limits of our ability to infer one observa-
tion from another, the rest is information that we need. For example, differential
equations are based on the presumption that boundary conditions (initial conditions
in time,and boundary conditions in space) are sufficient to predict the behavior of a
system. The values of the initial conditions and the boundary conditions are the in-
formation we need. This simple model of a system, where information is clearly and
simply separated from the problem of computation, is not always applicable.

Let us assume that we have made extensive observations and have separated from
these observations a minimal set that then can be used to infer all the rest.A minimal
set of information would have the property that no one piece of information in it
could be obtained from other pieces of information. Thus,as far as the set itself is con-
cerned, the information appears to be random. Of course we would not be satisfied
with any random set; it would have to be this one in particular, because we want to
use this information to tell us about all of the actual observations.

One of the difficulties with random numbers is that it is inherently difficult to
prove that numbers are random. We may simply not have thought of the right func-
tion f that can predict the value of the next number in a sequence from the previous
numbers. We could argue that this is one of the reasons that gambling is so attractive
to people because of the use of “lucky numbers” that are expected by the individual
to have a better-than-random chance of success. Indeed,it is the success of science to
have shown that apparently uncorrelated events may be related. For example, the
falling of a ball and the motion of the planets. At the same time, science provides a
framework in which noncausal correlations, otherwise called superstitions, are
rejected.

We have argued that the purpose of knowledge is to succinctly summarize infor-
mation that can be used for prediction. Thus,in its most abstract form, the problem
of deduction or prediction is a problem in data compression. It can thus be argued
that science is an exercise in data compression. This is the essence of the principle of
Occam’s razor and the importance of simplicity and universality in science.The more
universal and the more general a law is,and the simpler it is,then the more data com-
pression has been achieved. Often this is considered to relate to how valuable is the
contribution of the law to science. Of course, even if the equations are general and
simple,if we cannot solve them then they are not particularly useful from a practical
point of view. The concept of simplicity has always been poorly defined. While science
seeks to discover correlations and simplifications in observations of the universe
around us,ultimately the minimum description of a system (i.e.,the universe) is given
by the number of independent pieces of information required to describe it.

Our understanding of information and computation enters also into a discussion
of our models of systems discussed in previous sections. In many of these models, we
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assumed the existence of random variables, or random processes. This randomness
represents either unknown or complex phenomena. It is important to recognize that
this represents an assumption about the nature of correlations between different as-
pects of the problem that we are modeling. It assumes that the random process is in-
dependent of (uncorrelated with) the aspects of the system we are explicitly studying.
When we model the random process on a computer by a pseudo-random number
generator, we are assuming that the computations in the pseudo-random number
generator are also uncorrelated with the system we are studying. These assumptions
may or may not be valid, and tests of them are not generally easy to perform.

Fractals, Scaling and Renormalization

The physics of Newton and the related concepts of calculus, which have dominated
scientific thinking for three hundred years,are based upon the understanding that at
smaller and smaller scales—both in space and in time—physical systems become sim-
ple,smooth and without detail.A more careful articulation of these ideas would note
that the fine scale structure of planets, materials and atoms is not without detail.
However, for many problems, such detail becomes irrelevant at the larger scale. Since
the details are irrelevant, formulating theories in a way that assumes that the detail
does not exist yields the same results as a more exact description.

In the treatment of complex systems, including various physical and biological
systems,there has been a recognition that the concept of progressive smoothness on
finer scales is not always a useful mathematical starting point. This recognition is an
important fundamental change in perspective whose consequences are still being
explored.

We have already discussed in Section 1.1 the subject of chaos in iterative maps. In
chaotic maps, the smoothness of dynamic behavior is violated. It is violated because
fine scale details matter. In this section we describe fractals,mathematical models of
the spatial structure of systems that have increasing detail on finer scales.Geometric
fractals have a self-similar structure, so that the structure on the coarsest scale is re-
peated on finer length scales. A more general framework in which we can articulate
questions about systems with behavior on all scales is that of scaling theory intro-
duced in Section 1.10.3.One of the most powerful analytic tools for studying systems
that have scaling properties is the renormalization group. We apply it to the Ising
model in Section 1.10.4, and then return full cycle by applying the renormalization
group to chaos in Section 1.10.5.A computational technique,the multigrid method,
that enables the description o f problems on multiple scales is discussed in Section
1.10.6. Finally, we discuss briefly the relevance of these concepts to the study of com-
plex systems in Section 1.10.7.

1.10.1 Fractals
Traditional geometry is the study of the properties of spaces or objects that have in-
tegral dimensions. This can be generalized to allow effective fractional dimensions of
objects, called fractals, that are embedded in an integral dimension space. In recent

1.10
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years the recognition that fractals can play an important role in modeling natural phe-
nomena has fueled a whole area of research investigating the occurrence and proper-
ties of fractal objects in physical and biological systems.

Fractals are of ten def i n ed as geom etric obj ects whose spatial stru ctu re is sel f -
s i m i l a r. This means that by magn i f ying one part of the obj ect , we find the same stru c-
tu re as of the ori ginal obj ect . The obj ect is ch a racteri s ti c a lly form ed out of a co ll ec-
ti on of el em en t s : poi n t s , line segm en t s , planar secti ons or vo lume el em en t s . Th e s e
el em ents exist in a space of the same or high er dimen s i on to the el em ents them s elve s .
For ex a m p l e , line segm ents are on e - d i m en s i onal obj ects that can be found on a line,
p l a n e , vo lume or high er dimen s i onal space . We might begin to de s c ri be a fractal by
the obj ects of wh i ch it is form ed . However, geom etric fractals are of ten de s c ri bed by
a procedu re (algorithm) that cre a tes them in an ex p l i c i t ly self-similar manner.

One of the simplest examples of a fractal object is the Cantor set (Fig. 1.10.1).
This set is formed by a procedure that starts from a single line segment. We remove
the middle third from the segment. There are then two line segments left.We then re-
move the middle third from both of these segments, leaving four line segments.
Continuing iteratively, at the kth iteration there are 2k segments. The Cantor set,
which is the limiting set of points obtained from this process,has no line segments in
it. It is self-similar by direct construction,since the left and right third of the original
line segment can be expanded by a factor of three to appear as the original set.

An analog of the Cantor set in two dimensions is the Sierpinski gasket
(Fig. 1.10.2). It is constructed from an equilateral triangle by removing an internal tri-
angle which is half of the size of the original triangle. This procedure is then iterated
for all of the smaller triangles that result. We can see that there are no areas that are
left in this shape. It is self-similar, since each of the three corner triangles can be ex-
panded by a factor of two to appear as the original set.

For self-similar objects, we can obtain the effective fractal dimension directly by
considering their composition from parts. We do this by analogy with conventional
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Figure 1.10.1 Illustration of the construction of the Cantor set, one of the best-known frac-
tals. The Cantor set is formed by iteratively removing the middle third from a line segment,
then the middle third from the two remaining line segments, and so on. Four iterations of the
procedure are shown starting from the complete line segment at the top. ❚
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geometric objects which are also self-similar. For example,a line segment,a square, or
a cube can be formed from smaller objects of the same type. In general, for a d-di-
mensional cube, we can form the cube out of smaller cubes. If the size of the smaller
cubes is reduced from that of the large cube by a factor of , where is inversely pro-
portional to their diameter, ∝ 1/R, then the number of smaller cubes necessary to
form the original is N = d. Thus we could obtain the dimension as:

d = ln(N) / ln( ) (1.10.1)

For self-similar fractals we can do the same, where N is the number of parts that make
up the whole.Each of the parts is assumed to have the same shape, but reduced in size
by a factor of from the original object.

We can gen era l i ze the def i n i ti on of f ractal dimen s i on so that we can use it to
ch a racteri ze geom etric obj ects that are not stri ct ly sel f - s i m i l a r. Th ere is more than
one way to gen era l i ze the def i n i ti on . We wi ll adopt an intu i tive def i n i ti on of f ract a l
d i m en s i on wh i ch is cl o s ely rel a ted to Eq . ( 1 . 1 0 . 1 ) . If the obj ect is em bed ded in d- d i-
m en s i on s , we cover the obj ect with d- d i m en s i onal disks. This is illu s tra ted in Fig.
1.10.3 for a line segm ent and a rect a n gle in a two - d i m en s i onal space . If we cover the
obj ect with two - d i m en s i onal disks of a fixed rad iu s , R, using the minimal nu m ber of
disks po s s i bl e , the nu m ber of these disks ch a n ges with the rad ius of the disks ac-
cording to the power law:

N(R) ∝ R−d (1.10.2)

where d is defined as the fractal dimension. We note that the use of disks is only illus-
trative. We could use squares and the result can be proven to be equivalent.
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F i g u re 1.10.2 T he Sie r p i nski gasket is fo r med in a similar ma n ner to the Cantor set. Starting
f rom an equilateral tria ng l e, a similar tria ngle one half the size is re moved from the middle leav-
i ng three tria ngles at the corne r s. The pro c e du re is then iteratively applied to the re ma i n i ng tri-
a ng l e s. The fig u re shows the set that results after four itera t io ns of the pro c e du re. ❚
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We can use either Eq. (1.10.1) or Eq. (1.10.2) to calculate the dimension of the
Cantor set and the Sierpinski gasket. We illustrate the use of Eq. (1.10.2). For the
Cantor set, by construction, 2k disks (or line segments) of radius 1/3k will cover the
set. Thus we can write:

N(R / 3k) = 2k N(R) (1.10.3)
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F i g u re 1.10.3 In order to de f i ne the dime ns ion of a fractal object, we cons ider the problem of
c o v e r i ng a set with a minimal number of disks of radius R. (a) shows a line segme nt with thre e
d i f f e re nt coverings superimposed. (b) and (c) show a re c t a ngle with two differe nt coverings re-
s p e c t i v e l y. As the size of the disks de c reases the number of disks necessary to cover the shape
g rows as R−d. This behavior becomes exact only in the limit R → 0. The fractal dime ns ion de-
f i ned in this way is some t i mes called the box - c o u nt i ng dime ns ion, because d- d i me ns io nal boxe s
a re often used ra t her than disks. ❚
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Using Eq. (1.10.2) this is:

(R / 3k)−d = 2k R−d (1.10.4)

or:

3d = 2 (1.10.5)

which is:

d = ln(2) / ln(3) ≅ 0.631 (1.10.6)

We would arrive at the same result more directly from Eq. (1.10.1).
For the Sierpinski gasket, we similarly recognize that the set can be covered by

three disks of radius 1/2, nine disks of radius 1/4,and more generally 3k disks of ra-
dius 1/2k. This gives a dimension of:

d = ln(3) / ln(2) ≅ 1.585 (1.10.7)

For these fractals there is a deterministic algorithm that is used to generate them.
We can also consider a kind of stochastic fractal generated in a similar way, however,
at each level the algorithm involves choices made from a probability distribution. The
simplest modification of the sets is to assume that at each level a choice is made with
equal probability from several possibilities.For example,in the Cantor set, rather than
removing the middle third from each of the line segments, we could choose at ran-
dom which of the three thirds to remove. Similarly for the Sierpinski gasket, we could
choose which of the four triangles to remove at each stage. These would be stochastic
fractals,since they are not described by a deterministic self-similarity but by a statis-
tical self-similarity. Nevertheless, they would have the same fractal dimension as the
deterministic fractals.

Question 1.10.1 How does the dimension of a fractal,as defined by Eq.
(1.10.2), depend on the dimension of the space in which it is embedded?

Solution 1.10.1 The dimen s i on of a fractal is indepen dent of the di-
m en s i on of the space in wh i ch it is em bed ded . For ex a m p l e , we migh t
s t a rt with a d- d i m en s i onal space and increase the dimen s i on of the space
to d + 1 dimen s i on s . To show that Eq . (1.10.2) is not ch a n ged , we form a
covering of the fractal by d + 1 dimen s i onal sph eres whose inters ecti on
with the d- d i m en s i onal space is the same as the covering we used for the
a n a lysis in d d i m en s i on s . ❚

Question 1.10.2 Prove that the fractal dimension does not change if we
use squares or circles for covering an object.

Solution 1.10.2 Assume that we have minimal coverings of a shape using
N1(R) = c1R−d1 squares, and minimal coverings by N2(R) = c2R−d2 circles,
with d1 ≠ d2. The squares are characterized using R as the length of their side,
while the circles are characterized using R as their radius. If d1 is less than d2,
then for smaller and smaller R the number of disks becomes arbitrarily
smaller than the number of squares. However, we can cover the same shape
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using squares that circumscribe the disks. The number of these squares is
N ′1(R) = c1(R / 2)−d1. This is impossible, because for small enough R, N ′1(R)
will be smaller than N 1(R), which violates the assumption that the latter is a
minimal covering. Similarly, if d is greater than d ′, we use disks circum-
scribed around the squares to arrive at a contradiction. ❚

Question 1.10.3 Calculate the fractal dimension of the Koch curve given
in Fig. 1.10.4.

Solution 1.10.3 The Koch curve is composed out of four Koch curves re-
duced in size from the original by a factor of 3. Thus, the fractal dimension
is d = ln(4) / ln(3) ≈ 1.2619. ❚

Question 1.10.4 Show that the length of the Koch curve is infinite.

Solution 1.10.4 The Koch curve can be con s tru cted by taking out the mid-
dle third of a line segm ent and inserting two segm ents equ iva l ent to the on e
that was rem oved . Th ey are inserted so as to make an equ i l a teral tri a n gle wi t h
the rem oved segm en t . Thu s , at every itera ti on of the con s tru cti on procedu re ,
the length of the peri m eter is mu l ti p l i ed by 4/3 , wh i ch means that it diver ge s
to infinity. It can be proven more gen era lly that any fractal of d i m en s i on 2 >
d > 1 must have an infinite length and zero are a ,s i n ce these measu res of s i ze
a re for on e - d i m en s i onal and two - d i m en s i onal obj ects re s pectively. ❚

Eq. (1.10.2) neglects the jumps in N(R) that arise as we vary the radius R. Since
N(R) can only have integral values,as we lower R and add additional disks there are
discrete jumps in its value. It is conventional to define the fractal dimension by taking
the limit of Eq.(1.10.2) as R → 0, where this problem disappears. This approach,how-
ever, is linked philosophically to the assumption that systems simplify in the limit of
small length scales. The assumption here is not that the system becomes smooth and
featureless, but rather that the fractal properties will continue to all finer scales and
remain ideal. In a physical system,the fractal dimension cannot be taken in this limit.
Thus, we should allow the definition to be applied over a limited domain of length
scales as is appropriate for the problem. As long as the domain of length scales is large,
we can use this definition. We then solve the problem of discrete jumps by treating the
leading behavior of the function N(R) over this domain.

The problem of treating distinct dimensions at different length scales is only one
of the difficulties that we face in discussing fractal systems. Another problem is inho-
mogeneity. In the following section we discuss objects that are inherently inhomoge-
neous but for which an alternate natural definition of dimension can be devised to
describe their structure on all scales.

1.10.2 Trees
Itera tive procedu res like those used to make fractals can also be used to make geo-
m etric obj ects call ed tree s . An example of a geom etric tree , wh i ch be a rs va g u e
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re s em bl a n ce to physical tree s , is shown in Fig. 1 . 1 0 . 5 . The tree is form ed by starti n g
with a single obj ect (a line segm en t ) , scaling it by a factor of 1/2 , du p l i c a ting it two
times and attaching the parts to the ori ginal obj ect at its bo u n d a ry. This process is
t h en itera ted for each of the re su l ting part s . The itera ti ons cre a te stru ctu re on finer
and finer scales.
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Figure 1.10.4 Illustration of the starting line segment and four successive stages in the for-
mation of the Koch curve. For further discussion see Questions 1.10.3 and 1.10.4. ❚
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We can generalize the definition of a tree to be a set formed by iteratively adding
to an object copies of itself. At iteration t, the added objects are reduced in size by a
factor t and duplicated N t times, the duplicated versions being rotated and then
shifted by vectors whose lengths converge to zero as a function of t. A tree is different
from a fractal because the smaller versions of the original object, are not contained
within the original object.

The fractal dimen s i on of trees is not as stra i gh tforw a rd as it is for sel f - s i m i l a r
f ract a l s . The ef fective fractal dimen s i on can be calculated ; h owever, it gives re su l t s
that are not intu i tively rel a ted to the tree stru ctu re . We can see why this is a probl em
in Fig. 1 . 1 0 . 6 . The dimen s i on of the regi on of the tree wh i ch is above the size R is that
of the em bed ded en ti ty (line segm en t s ) , while the fractal dimen s i on of the regi on
wh i ch is less than the size R is determ i n ed by the spatial stru ctu re of the tree . Bec a u s e
of the ch a n ging va lue of R in the scaling rel a ti on , an interm ed i a te va lue for the frac-
tal dimen s i on would typ i c a lly be found by a direct calculati on (Questi on 1.10.5).

It is reasonable to avoid this problem by classifying trees in a different category
than fractals. We can define the tree dimension by considering the self-similarity of
the tree structure using the same formula as Eq. (1.10.1), but now applying the defi-
nition to the number N and scaling of the displaced parts of the generating struc-
ture, rather than the embedded parts as in the fractal. In Section 1.10.7 we will en-
counter a treelike structure; however, it will be more useful to describe it rather than
to give a dimension that might characterize it.

Question 1.10.5 A simple version of a tree can be constructed as a set of
points {1/k } where k takes all positive integer values.The tree dimension
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Figure 1.10.5 A geometric tree
formed by an iterative algorithm
similar to those used in forming
fractals. This tree can be formed
starting from a single line seg-
ment. Two copies of it are then re-
duced by a factor of 2, rotated by
45˚ left and right and attached at
one end. The procedure is repeated
for each of the resulting line seg-
ments. Unlike a fractal, a tree is
not solely composed out of parts
that are self-similar. It is formed
out of self-similar parts, along
with the original shape — its
trunk. ❚
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of this set is zero because it can be formed from a point which is duplicated
and then displaced by progressively smaller vectors. Calculate the fractal di-
mension of this set.

Solution 1.10.5 We construct a covering of scale R from line segments of
this length. The covering that we construct will be formed out of two parts.
One part is constructed from segments placed side by side. This part starts
from zero and covers infinitely many points of the set. The other part is con-
structed from segments that are placed on individual points. The crossing
point between the two sets can be calculated as the value of k where the dif-
ference between successive points is R. For k below this value,it is not possi-
ble to include more than one point in one line segment. For k above this
value, there are two or more points per line segment. The critical value of k
is found by setting:

(1.10.8)

or kc = R−1/2. This means that the number of segments needed to cover indi-
vidual points is given by this value. Also, the number of segments that are
placed side by side must be enough to go up to this point, which has the value
1/kc . This number of segments is given by

(1.10.9)
    

1 kc

R
= R−1/2 ≈ kc

    

1

kc

−
1

kc +1
=

1

kc (kc +1)
≈

1

kc
2

= R
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Thus we must cover the line segment up to the point R1/2 with R−1/2 line seg-
ments, and use an additional R−1/2 line segments to cover the rest of the
points. This gives a total number of line segments in a covering of 2R−1/2. The
fractal dimension is thus d = 1/2.

We could have used fewer line segments in the covering by covering
pairs of points and triples of points rather than covering the whole line seg-
ment below 1/kc . However, each partial covering of the set that is concerned
with pairs, triples and so on consists of a number of segments that grows as
R−1/2. Thus our conclusion remains unchanged by this correction. ❚

Trees il lustrate only one example of how system properties may exist on many
scales, but are not readily described as fractals in the conventional sense. In order to
generalize our concepts to enable the discussion of such properties, we will introduce
the concept of scaling.

1.10.3 Scaling
Geometric fractals suggest that systems may have a self-similar structure on all length
scales. This is in contrast with the more typical approach of science, where there is a
specific scale at which a phenomenon appears. We can think about the problem of de-
scribing the behavior of a system on multiple length scales in an abstract manner. A
phenomenon (e.g., a measurable quantity) may be described by some function of
scale, f (x). Here x represents the characteristic scale rather than the position. When
there is a well-defined length scale at which a particular effect occurs, for longer length
scales the function would typically decay exponentially:

f(x) ∼ e−x /λ (1.10.10)

This functional dependence implies that the characteristic scale at which this prop-
erty disappears is given by .

In order for a system property to be relevant over a large range of length scales,it
must vary more gradually than exponentially. In such cases, typically, the leading be-
havior is a power law:

f (x) ∼ x (1.10.11)

A function that follows such power-law behavior can also be characterized by the scal-
ing rule:

f (ax) = a f (x) (1.10.12)

This means that if we ch a racteri ze the sys tem on one scale, t h en on a scale that is larger
by the factor a it has a similar appe a ra n ce , but scaled by the factor a . is call ed the scal-
ing ex pon en t . In con trast to the beh avi or of an ex pon en ti a l , for a power law there is no
p a rticular length at wh i ch the property disappe a rs . Thu s , it may ex tend over a wi de
ra n ge of l ength scales. Wh en the scaling ex pon ent is not an integer, the functi on f (x) is
n on a n a lyti c . Non - a n a lyti c i ty is of ten indicative of a property that cannot be tre a ted by
a s suming that it becomes smooth on small or large scales. However, f racti onal scaling
ex pon ents are not nece s s a ry in order for power- l aw scaling to be app l i c a bl e .
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Even when a system property follows power-law scaling, the same behavior can-
not continue over arbitrarily many length scales. The disappearance of a certain
power law may occur because of the appearance of a new behavior on a longer scale.
This change is characterized by a crossover in the scaling properties of f (x). An ex-
ample of crossover occurs when we have a quantity whose scaling behavior is

(1.10.13)

If A1 > A2 and 1 < 2 then the first term will dominate at smaller length scales, and
the second at larger length scales. Alternatively, the power-law behavior may eventu-
ally succumb to exponential decay at some length scale.

There are three related approaches to applying the concept of scaling in model or
physical systems. The first approach is to consider the scale x to be the physical size of
the system, or the amount of matter it contains. The quantity f (x) is then a property
of the system measured as the size of the system changes. The second approach is to
keep the system the same, but vary the scale o f our observation. We assume that our
ability to observe the system has a limited degree of discernment of fine details—a
finest scale of observation. Finer details are to be averaged over or disregarded. By
moving toward or away from the system, we change the physical scale at which our
observation can no longer discern details. x then represents the smallest scale at which
we can observe variation in the system st ructure. Finally, in the third approach we
consider the relationship between a property measured at one location in the system
and the same property measured at another location separated by the distance x. The
function f (x) is a correlation of the system measurements as a function of the distance
between regions that are being considered.

Examples of quantities that follow scaling relations as a function of system size
are the extensive properties of thermodynamic systems (Section 1.3) such as the en-
ergy, entropy, free energy, volume, number of particles and magnetization:

U(ax) = adU(x) (1.10.14)

These properties measure quantities of the whole system as a function of system size.
All have the same scaling exponent—the dimension of space. Intrinsic thermody-
namic quantities are independent of system size and therefore also follow a scaling be-
havior where the scaling exponent is zero.

An o t h er example of scaling can be found in the ra n dom walk (Secti on 1.2). We
can gen era l i ze the discussion in Secti on 1.2 to all ow a walk in d d i m en s i ons by ch oo s-
ing steps wh i ch are ±1 in each dimen s i on indepen den t ly. A ra n dom walk of N s teps in
t h ree dimen s i ons can be thought of as a simple model of a molecule form ed as a ch a i n
of m o l ecular units—a po lym er. If we measu re the avera ge distance bet ween the en d s
of the chain as a functi on of the nu m ber of s teps R(N) , we have the scaling rel a ti on :

R(aN) = a1/2 R(N) (1.10.15)

This scaling of distance traveled in a random walk with the number of steps taken is
independent of dimension. We will consider random walks and other models of poly-
mers in Chapter 5.

    f (x) ~ A1x
1 + A2x 2
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Often our interest is in knowing how different parts of the system affect each
other. Direct interactions do not always reflect the degree of influence. In complex sys-
tems, in which many elements are interacting with each other, there are indirect
means of interacting that transfer influence between one part of a system and another.
The simplest example is the Ising model, where even short-range interactions can lead
to longer-range correlations in the magnetization. The correlation function int ro-
duced in Section 1.6.5 measures the correlations between different locations. These
correlations show the degree to which the interactions couple the behavior of differ-
ent parts of the system. Correlations of behavior occur in both space and time. As we
mentioned in Section 1.3.4, near a second-order phase transition, there are correla-
tions between different places and times on every length and time scale, because they
follow a power-law behavior. This example will be discussed in greater detail in the
following section.

Our discussion of scaling also finds application in the theory of computation
(Section 1.9) and the practical aspects of simulation (Section 1.7). In addition to the
question of computability discussed in Section 1.9, we can also ask how hard it is to
compute something. Such questions are generally formulated by describing a class of
problems that can be ordered by a parameter N that describes the size of the problem.
The objective of the theory of computational complexity is to determine how the
number of operations necessary to solve a problem grows with N. A scaling analysis
can also be used to compare different algorithms that may solve the same problem.
We are often primarily concerned with the scaling behavior (exponential, power law
and the value of the scaling exponent) rather than the coefficients of the scaling be-
havior, because in the comparison of the difficulty of solving different problems or
different methodologies this is often, though not always, the most important issue.

1.10.4 Renormalization group

G e n e ral method The ren orm a l i z a ti on group is a formalism for stu dying the scal-
ing properties of a sys tem . It starts by assuming a set of equ a ti ons that de s c ri be the
beh avi or of a sys tem . We then ch a n ge the length scale at wh i ch we are de s c ri bing the
s ys tem . In ef fect , we assume that we have a finite abi l i ty to see det a i l s . By movi n g
aw ay from a sys tem , we lose some of the det a i l . At the new scale we assume that the
same set of equ a ti ons can be app l i ed , but po s s i bly with different coef f i c i en t s . Th e
obj ective is to rel a te the set of equ a ti ons at one scale to the set of equ a ti ons at the
o t h er scale. O n ce this is ach i eved , the scale-depen dent properties of the sys tem can
be inferred .

Applications of the renormalization group method have been largely to the study
of equilibrium systems,particularly near second-order phase transitions where mean
field approaches break down (Section 1.6).The premise of the renormalization group
is that exactly at a second-order phase transition,the equations describing the system
are independent of scale. In recent years, dynamic renormalization theory has been
developed to describe systems that evolve in time. In this section we will describe the
more conventional renormalization group for thermodynamic systems.
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We il lustrate the concepts of renormalization using the Ising model. The Ising
model,discussed in Section 1.6, describes the interactions of spins on a lattice. It is a
first model of any system that exhibits simple cooperative behavior, such as a magnet.

In order to apprec i a te the con cept of ren orm a l i z a ti on , it is useful to recogn i ze that
the Ising model is not a true micro s copic theory of the beh avi or of a magn et . It migh t
s eem that there is a well - def i n ed way to iden tify an indivi dual spin with a single el ectron
at the atomic level .However, this is far from app a rent wh en equ a ti ons that de s c ri be qu a n-
tum mechanics at the atomic level are con s i dered . Si n ce the rel a ti onship bet ween the mi-
c ro s copic sys tem and the spin model is not manife s t , it is clear that our de s c ri pti on of t h e
m a gn et using the Ising model relies upon the mac ro s copic properties of the model ra t h er
than its micro s copic natu re . S t a ti s tical mechanics does not gen era lly attem pt to derive
m ac ro s copic properties direct ly from micro s copic re a l i ty. In s te ad , it attem pts to de s c ri be
the mac ro s copic ph en om ena from simple model s . We might not give up hope of i den ti-
f ying a specific micro s copic rel a ti onship bet ween a particular material and the Is i n g
m odel ,h owever, the use of the model does not rely upon this iden ti f i c a ti on .

Essential to this approach is that many of the details of the atomic regime are
somehow irrelevant at longer length scales. We will return later to discuss the rele-
vance or irrelevance of microscopic details. However, our first question is: What is a
single spin variable? A spin variable represents the effective magnetic behavior of a re-
gion of the material. There is no particular reason that we should imagine an indi-
vidual spin variable as representing a small or a large region of the material.
Sometimes it might be possible to consider the whole magnet as a single spin in an
external field. Identifying the spin with a region of the material of a particular size is
an assignment of the length scale at which the model is being applied.

What is the difference between an Ising model describing the system at one
length scale and the Ising model describing it on another? The essential point is that
the interactions between spins will be different depending on the length scale at which
we choose to model the system. The renormalization group takes this discussion one
step further by explicitly relating the models at different scales.

In Fig. 1.10.7 we illustrate an Ising model in two dimensions. There is a second
Ising model that is used to describe this same system but on a length scale that is twice
as big. The first Ising model is described by the energy function (Hamiltonian):

(1.10.16)

For conven i en ce , in what fo ll ows we have inclu ded a constant en er gy term −c N =−c Σ1 .
This term does not affect the beh avi or of the sys tem ,h owever, its va ri a ti on from scale
to scale should be inclu ded . The second Ising model is de s c ri bed by the Ha m i l ton i a n

(1.10.17)

where both the variables and the coefficients have primes. While the first model has
N spins, the second model has N ′ spins. Our objective is to relate these two models.
The general process is called renormalization. When we go from the fine scale to the
coarse scale by eliminating spins, the process is called decimation.

    

′ E [{ ′ s i }]= − ′ c 1
i

∑ – ′ h ′ s i
i

∑ − ′ J ′ s i ′ s j
<ij>
∑

    

E[{s i }]= −c 1
i

∑ – h s i

i

∑ − J s is j

<ij>
∑
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Figure 1.10.7 Schematic illustration of two Ising models in two dimensions. The spins are
indicated by arrows that can be UP or DOWN. These Ising models illustrate the modeling of a
system with different levels of detail. In the upper model there are one-fourth as many spins
as in the lower model. In a renormalization group treatment the parameters of the lower
model are related to the parameters of the upper model so that the same system can be de-
scribed by both. Each of the spins in the upper model, in effect, represents four spins in the
lower model. The interactions between adjacent spins in the upper model represent the net
effect of the interactions between groups of four spins in the lower model. ❚
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There are a variety of methods used for relating models at different scales. Each
of them provides a distinct conceptual and practical approach. While in principle they
should provide the same answer, they are typically approximated at some stage of the
calculation and therefore the answers need not be the same. All the approaches we de-
scribe rely upon the partition function to enable direct connection from the micro-
scopic statistical treatment to the macroscopic thermodynamic quantities. For a par-
ticular system, the par tition function can be written so that it has the same value,
independent of which representation is used:

(1.10.18)

It is conven ti onal and conven i ent wh en performing ren orm a l i z a ti on tra n s form a-
ti ons to set = 1 /k T = 1 . Si n ce mu l tiplies each of the para m eters of the en er gy
f u n cti on , it is a redundant para m eter. It can be rei n s erted at the end of the calcu-
l a ti on s .

The different approaches to renormalization are useful for various models that
can be studied. We will describe three of them in the following paragraphs because of
the importance of the different conceptual treatments. The three approaches are (1)
summing over values of a subset of the spins, (2) averaging over a local combination
of the spins, and (3) summing over the short wavelength degrees of freedom in a
Fourier space representation.

1. Summing over values of a subset of the spins. In the first approach we consider
the spins on the larger scale to be a subset of the spins on the finer scale. To find
the energy of interaction between the spins on the larger scale we need to elimi-
nate (decimate) some of the spins and replace them by new interactions between
the spins that are left. Specifically, we identify the larger scale spins as corre-
sponding to a subset {si}A of the smaller scale spins. The rest of the spins {si}B

must be eliminated from the fine scale model to obtain the coarse scale model.
We can implement this directly by using the partition function:

(1.10.19)

In this equation we have identified the spins on the larger scale as a subset of the
finer scale spins and have summed over the finer scale spins to obtain the effec-
tive energy for the larger scale spins.

2. Averaging over a local combination of the spins. We need not identify a particu-
lar spin of the finer scale with a particular spin of the coarser scale.We can choose
to identify some function of the finer scale spins with the coarse scale spin. For
example, we can identify the majority rule of a certain number of fine scale spins
with the coarse scale spins:

(1.10.20)
    

e −E[{ ′ s i }] =
i ∈A
∏ ′ s i ,sign( s i∑ )

{s i }

∑ e −E[{s i }]
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This is easier to think abo ut wh en an odd nu m ber of spins are being ren orm a l i zed
to become a single spin. No te that this is qu i te similar to the con cept of defining a
co ll ective coord i n a te that we used in Secti on 1.4 in discussing the two - s t a te sys tem .
The differen ce here is that we are defining a co ll ective coord i n a te out of on ly a few
ori ginal coord i n a te s , so that the redu cti on in the nu m ber of degrees of f reedom is
com p a ra tively small . No te also that by conven ti on we con ti nue to use the term
“en er gy,” ra t h er than “f ree en er gy,” for the co ll ective coord i n a te s .

3. Summing over the short wavelength degrees of freedom in a Fourier space rep-
resentation. Rather than performing the elimination of spins dir ectly, we may
recognize that our procedure is having the effect of removing the fine scale vari-
ation in the problem. It is natural then to consider a Fourier space representation
where we can remove the rapid changes in the spin values by eliminating the
higher Fourier components. To do this we need to represent the energy function
in terms of the Fourier transform of the spin variables:

(1.10.21)

Writing the Hamiltonian in terms of the Fourier transformed variables, we then
sum over the values of the high frequency terms:

(1.10.22)

The remaining coordinates sk have k > k0.

All of the approaches described above typically require some approximation in
order to perform the analysis. In general there is a conservation of effort in that the
same difficulties tend to arise in each approach, but with different manifestation.Part
of the reason for the difficulties is that the Hamiltonian we use for the Ising model is
not really complete. This means that there can be other parameters that should be in-
cluded to describe the behavior of the system. We will see this by direct application in
the following examples.

Ising model in one dimension We illu s tra te the basic con cepts by app lying the
ren orm a l i z a ti on group to a on e - d i m en s i onal Ising model wh ere the procedu re can
be done ex act ly. It is conven i ent to use the first approach (nu m ber 1 above) of
i den ti f ying a su b s et of the fine scale spins with the larger scale model . We start wi t h
the case wh ere there is an interacti on bet ween nei gh boring spins, but no magn eti c
f i el d :

(1.10.23)

We sum the partition function over the odd spins to obtain

(1.10.24)
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∑
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We equate this to the energy for the even spins by themselves, but with primed
quantities:

(1.10.25)

This gives:

(1.10.26)

or

c ′ + J ′sisi + 2 = ln(2cosh(J(si + si + 2))) + 2c (1.10.27)

Inserting the two distinct combinations of values of si and si+2 (si = si+2 and si = −si+2),
we have:

c ′ + J ′ = ln(2cosh(2J )) + 2c
(1.10.28)

c ′ − J ′ = ln(2cosh(0)) + 2c = ln(2) + 2c

Solving these equations gives the primed quantities for the larger scale model as:

J ′ = (1/2)ln(cosh(2,J ))
(1.10.29)

c ′ = 2c + (1/2)ln(4cosh(2J ))

This is the renormalization group relationship that we have been looking for. It relates
the values of the parameters in the two different energy functions at the different
scales.

While it may not be obvious by inspection, this iterative map always causes J to
decrease. We can see this more easily if we transform the relationship of J to J ′ to the
equivalent form:

tanh(J ′) = tanh(J)2 (1.10.30)

This means that on longer and longer scales the effective interaction between neigh-
boring spins becomes smaller and smaller. Eventually the system on long scales be-
haves as a string of decoupled spins.

The analysis of the one-dimensional Ising model can be extended to include a
magnetic field. The decimation step becomes:

(1.10.31)

We equate this to the coarse scale partition function:

(1.10.32)

which requires that:
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c ′ + h ′ + J ′ = h + ln(2cosh(h + 2J)) + 2c

c ′ − J ′ = ln(2cosh(h)) + 2c (1.10.33)

c ′ − h ′ + J ′ = −h + ln(2cosh(h − 2J)) + 2c

We solve these equations to obtain:

c ′ = 2c + (1/4)ln(16cosh(h + 2J)cosh(h − 2J)cosh(h)2)

J ′ = (1/4)ln(cosh(h + 2J)cosh(h − 2J)/cosh(h)2) (1.10.34)

h′ = h + (1/2)ln(cosh(h + 2J)/cosh(h − 2J))

which is the desired renormalization group transformation. The renormalization
transformation is an iterative map in the parameter space (c, h, J).

We can show what happens in this iterative map using a plot of changes in the
values of J and h at a particular value of these parameters. Such a diagram of flows in
the parameter space is illustrated in Fig. 1.10.8. We can see from the figure or from Eq.
(1.10.34) that there is a line of fixed points of the iterative map at J = 0 with arbitrary
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Figure 1.10.8 The renormalization transformation for the one-dimensional Ising model is il-
lustrated as an iterative flow diagram in the two-dimensional (h,J ) parameter space. Each of
the arrows represents the effect of decimating half of the spins. We see that after a few iter-
ations the value of J becomes very small. This indicates that the spins become decoupled from
each other on a larger scale. The absence of any interaction on this scale means that there is
no phase transition in the one-dimensional Ising model. ❚
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value of h. This simply means that the spins are decoupled. For J = 0 on any scale,the
behavior of the spins is determined by the value of the external field.

The line of f i xed points at J = 0 is a stable (attracting) set of f i xed poi n t s . Th e
f l ow lines of the itera tive map take us to these fixed points on the attractor line. In
ad d i ti on , t h ere is an unstable fixed point at J = ∞. This would corre s pond to a
s tron gly co u p l ed line of s p i n s , but since this fixed point is unstable it does not de-
s c ri be the large scale beh avi or of the model . For any finite va lue of J, ch a n ging the
scale ra p i dly causes the va lue of J to become small . This means that the large scale
beh avi or is alw ays that of a sys tem with J = 0 .

Ising model in two dimensions In the one-dimensional case treated in the pre-
vious section, the renormalization group works perfectly and is also, from the point
of view of studying phase transitions,uninteresting. We will now look at two dimen-
sions, where the renormalization group must be approximated and where there is also
a phase transition.

We can simplify our task in two dimensions by eliminating half of the spins (Fig.
1.10.9) instead of three out of four spins as illustrated previously in Fig. 1.10.7.
Eliminating half of the spins causes the square cell to be rotated by 45˚,but this should
not cause any problems. Labeling the spins as in Fig. 1.10.9 we write the decimation
step for a Hamiltonian with h = 0:

(1.10.35)

In the last expression we take into consideration that each bond of the form s1s2 ap-
pears in two squares and each spin appears in four squares.

In order to solve Eq . (1.10.35) for the va lues of c ′and J ′ we must insert all po s-
s i ble va lues of the spins (s1,s2,s3,s4) . However, this leads to a serious probl em .
Th ere are four disti n ct equ a ti ons that arise from the different va lues of the spins.
This is redu ced from 24 = 8 bec a u s e , by sym m etry, i nverting all of the spins give s
the same answer. The probl em is that while there are four equ a ti on s , t h ere are
on ly two unknowns to solve for, c ′ and J ′. The probl em can be illu s tra ted by rec-
ognizing that there are two disti n ct ways to have two spins U P and two spins
DOW N. One way is to have the spins that are the same be ad jacent to each other,
and the other way is to have them be oppo s i te each other ac ross a diagon a l . Th e
t wo ways give the same re sult for the va lue of (s1 + s2 + s3 + s4) but different re su l t s
for (s1s2 + s2s3 + s3s4 + s4s1) .

    

Z =
{s i }A

∑
{s i }B

∑ e
c 1+J

i
∑

i
∑ s0 (s 1+s 2+s 3 +s 4)

=
{s i }A

∑
i∈B
∏ 2cosh(J(s1 +s2 + s3 + s4 ))e c

=
{s i }A

∑
i∈B
∏ e c′+(J ′/2)(s1s 2+s2 s 3+s3 s 4+s 4 s1)
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In order to solve this problem, we must introduce additional parameters which
correspond to other interactions in the Hamiltonian. To be explicit, we would make a
table of symmetry-related combinations of the four spins as follows:

(s1,s2,s3,s4) (1,1,1,1) (1,1,1,−1) (1,1,−1,−1) (1,−1,1,−1)
1 1 1 1 1

(s1 + s2 + s3 + s4) 4 2 0 0
(s1s2 + s2s3 + s3s4 + s4s1) 4 0 0 −4 (1.10.36)

(s1s3 + s2s4) 2 0 −2 2
s1s2s3s4 1 −1 1 1

In order to make use of these to resolve the problems with Eq.(1.10.35), we must in-
troduce new interactions in the Hamiltonian and new parameters that multiply them.
This leads to second-neighbor interactions (across a cell diagonal),and four spin in-
teractions around a square:

(1.10.37)

where the notation << ij >> indicates second-neighbor spins across a square diagonal,
and < ijkl > indicates spins around a square. This might seem to solve our problem.
However, we started out from a Hamiltonian with only two parameters,and now we
are switching to a Hamiltonian with four parameters. To be self-consistent, we should
start from the same set of parameters we end up with. When we start with the addi-
tional parameters K and L this will,however, lead to still further terms that should be
included.

    

E[{s i }]= − ′ c 1
i

∑ – ′ J s is j

<ij>
∑ − ′ K si s j

<<ij >>
∑ − ′ L si s j

<ijkl>
∑ sksl
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F i g u re 1.10.9 In a re no r ma l-
i z a t ion tre a t me nt of the two-
d i me ns io nal Is i ng mo del it is
possible to de c i mate one out
of two spins as illustrated in
this fig u re. The black do t s
re p re s e nt spins that re main in
t he larger-scale mo del, and
t he white dots re p re s e nt spins
that are de c i ma t e d. The ne a r-
e s t - ne ighbor int e ra c t io ns in
t he larger-scale mo del are
s hown by da s hed line s. As dis-
cussed in the text, the pro c e s s
of de c i ma t ion int ro duces ne w
i nt e ra c t io ns between spins
a c ross the dia go nal, and fo u r
spin int e ra c t io ns between
s p i ns aro u nd a squa re. ❚
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Relevant and irrelevant parameters In general,as we eliminate spins by renormal-
ization, we introduce interactions between spins that might not have been included
in the original model. We will have interactions between second or third neighbors or
between more than two spins at a time. In principle, by using a complete set of para-
meters that describe the system we can perform the renormalization transformation
and obtain the flows in the parameter space. These flows tell us about the scale-de-
pendent properties of the system.

We can characterize the flows by focusing on the fixed points of the iterative map.
These fixed points may be stable or unstable. When a fixed point is unstable, renor-
malization takes us away from the fixed point so that on a larger scale the properties
of the system are found to be different from the values at the unstable fixed point.
Significantly, it is the unstable fixed points that represent the second-order phase
transitions. This is because deviating from the fixed point in one direction causes the
parameters to flow in one direction, while deviating from the fixed point in another
direction causes the parameters to flow in a different direction. Thus,the macroscopic
properties of the system depend on the direction microscopic parameters deviate
from the fixed point—a succinct characterization of the nature of a phase transition.

Using this characterization of fixed points, we can now distinguish between dif-
ferent types of parameters in the model. This includes all of the additional parame-
ters that might be introduced in order to achieve a self-consistent renormalization
transformation. There are two major categories of parameters: relevant or irrelevant.
Starting near a particular fixed point, changes in a relevant parameter grow under
renormalization. Changes in an irrelevant parameter shrink.Because renormalization
indicates the values of system parameters on a larger scale,this tells us which micro-
scopic parameters are important to the macroscopic scale. When observed on the
macroscopic scale, relevant parameters change at the phase transition, while irrele-
vant parameters do not.A relevant parameter should be included in the Hamiltonian
because its value affects the macroscopic behavior. An irrelevant parameter may often
be included in the model in a more approximate way. Marginal parameters are the
borderline cases that neither grow nor shrink at the fixed point.

Even when we are not solely interested in the behavior of a system at a phase tran-
sition, but rather are concerned with its macroscopic properties in general,the defin-
ition of “relevant” and “irrelevant” continues to make sense. If we start from a partic-
ular microscopic description of the system, we can ask which parameters are relevant
for the macroscopic behavior. The relevant parameters are the ones that can affect the
macroscopic behavior of the system. Thus, a change in a relevant microscopic para-
meter changes the macroscopic behavior. In terms of renormalization, changes in rel-
evant parameters do not disappear as a result of renormalization.

We see that the use of a ny model , su ch as the Ising model , to model a physical sys-
tem assumes that all of the para m eters that are essen tial in de s c ri bing the sys tem have
been inclu ded . Wh en this is tru e , the re sults are universal in the sense that all micro-
s copic Ha m i l tonians wi ll give rise to the same beh avi or. Ad d i ti onal terms in the
Ha m i l tonian cannot affect the mac ro s copic beh avi or. We know that the micro s cop i c
beh avi or of the physical sys tem is not re a lly de s c ri bed by the Ising model or any other
simple model . Thu s , in cre a ting models we alw ays rely upon the con cept , i f not the
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proce s s , of ren orm a l i z a ti on to make many of the micro s copic details disappe a r, en-
a bling our simple models to de s c ri be the mac ro s copic beh avi or of the physical sys tem .

In the Ising model, in addition to longer range and multiple spin interactions,
there is another set of parameters that may be relevant. These parameters are related
to the use of binary variables to describe the magnetization of a region of the mater-
ial. It makes sense that the process of renormalization should cause the model to have
additional spin values that are intermediate between fully magnetized UP and fully
magnetized DOWN. In order to accommodate this, we might introduce a continuum
of possible magnetizations.Once we do this,the amplitude of the magnetization has
a probability distribution that will be controlled by additional parameters in the
Hamiltonian. These parameters may also be relevant or irrelevant. When they are ir-
relevant,the Ising model can be used without them. However, when they are relevant,
a more complete model should be used.

The parameters that are relevant generally depend on the dimensionality of
space. From our analysis of the behavior of the one-dimensional Ising model,the pa-
rameter J is irrelevant. It is clearly irrelevant because not only variations in J but J it-
self disappears as the scale increases. However, in two dimensions this is not true.

For our purposes we will be satisfied by simplifying the renormalization treat-
ment of the two-dimensional Ising model so that no additional parameters are intro-
duced. This can be done by a fourth renormalization group technique which has some
conceptual as well as practical advantages over the others. However, it does hide the
importance of determining the relevant parameters.

Bond shifting We simplify our analysis of the two-dimensional Ising model by mak-
ing use of the Migdal-Kadanoff transformation. This renormalization group tech-
nique is based on the recognition that the correlation between adjacent spins can en-
able us to, in effect, substitute the role of one spin for another. As far as the coarser
scale model is concerned, the function of the finer scale spins is to mediate the inter-
action between the coarser scale spins. Because one spin is correlated to the behavior
of its neighbor, we can shift the responsibility for this interaction to a neighbor, and
use this shift to simplify elimination of the spins.

To apply these ideas to the two-dimensional Ising model, we move some of the
interactions (bonds) between spins, as shown in Fig. 1.10.10. We note that the dis-
tance over which the bonds act is preserved. The net result of the bond shifting is that
we form short linear chains that can be renormalized just like a one-dimensional
chain. The renormalization group transformation is thus done in two steps.First we
shift the bonds, then we decimate. Once the bonds are mo ved, we write the renor-
malization of the partition function as:

(1.10.38)

    

Z =
{s i }A

∑
{s i }B

∑
{si }C

∑ e
c 1

i
∑ +2J

i
∑ s 0(s1+s 2)

=
i ∈A
∏ 2cosh(2J(s1 +s2))e 4c

{s i }

∑
=

i ∈A
∏ e ′ c + ′ J (s 1s 2 )

{s i}

∑
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The spin labels s0, s1, s2 are assigned along each doubled bond, as indicated in
Fig. 1.10.10. The three types of spin A, B and C correspond to the white, black and
gray dots in the figure. The resulting equation is the same as the one we found when
performing the one-dimensional renormalization group transformation with the ex-
ception of factors of two. It gives the result:
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s1 s2s0

F i g u re 1 . 1 0 . 1 0 I l l u s-
tration of the Migdal-
Kadanoff renormaliza-
tion transformation that
enables us to bypass
the formation of addi-
tional interactions. In
this approach some of
the interactions be-
tween spins are moved
to other spins. If all the
spins are aligned (at low
temperature or high J),
then shifting bonds
doesn’t affect the spin
alignment. At high tem-
perature, when the spins
are uncorrelated, the in-
teractions are not im-
portant anyway. Near
the phase transition,
when the spins are
highly correlated, shift-
ing bonds still makes
sense. A pattern of bond
movement is illustrated
in (a) that gives rise to
the pattern of doubled
bonds in (b). Note that
we are illustrating only
part of a periodic lattice,
so that bonds are moved
into and out of the re-
gion illustrated. Using
the exact renormaliza-
tion of o ne - d i me ns io na l
c h a i ns, the gray spins
a nd the black spins can
be de c i mated to leave
only the white spins. ❚
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J ′ = (1/2)ln(cosh(4J ))
(1.10.39)

c ′ = 4c + (1/2)ln(4cosh(4J ))

The ren orm a l i z a ti on of J in the two - d i m en s i onal Ising model tu rns out to beh ave
qu a l i t a tively different from the on e - d i m en s i onal case. Its beh avi or is plotted in
F i g. 1.10.11 using a flow diagra m . Th ere is an unstable fixed point of the itera tive
map at J ≈ . 3 0 5 . This non zero and non i n f i n i te fixed point indicates that we have a
phase tra n s i ti on . Rei n s erting the tem pera tu re , we see that the phase tra n s i ti on occ u rs
at J = .305 which is significantly larger than the mean field result zJ = 1 or J = .25
found in Section 1.6. The exact value for the phase transition for this lattice, J ≈ .441,
which can be obtained analytically by other techniques, is even larger.

It turns out that there is a trick that can give us the exact transition point using a
similar renormalization transformation. This trick begins by recognizing that we
could have moved bonds in a larger square. For a square with b cells on a side, we
would end up with each bond on the perimeter being replaced by a bond of strength
b. Using Eq.(1.10.30) we can infer that a chain of b bonds of strength bJ gives rise to
an effective interaction whose strength is

J ′(b) = tanh−1(tanh(bJ )b) (1.10.40)
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Figure 1.10.11 The two-dimensional Ising model renormalization group transformation ob-
tained from the Migdal-Kadanoff transformation is illustrated as a flow diagram in the one-
dimensional parameter space (J). The arrows show the effect of successive iterations start-
ing from the black dots. The white dot indicates the position of the unstable fixed point, J c,
which is the phase transition in this model. Starting from values of J slightly below J c, iter-
ation results in the model on a large scale becoming decoupled with no interactions between
spins (J → 0). This is the high-temperature phase of the material. However, starting from
values of J slightly above J c iteration results in the model on the large scale becoming
strongly coupled (J → ∞) and spins are aligned. (a) shows only the range of values from 0
to 1, though the value of J can be arbitrarily large. (b) shows an enlargement of the region
around the fixed point. ❚
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The trick is to take the limit b → 1, because in this limit we are left with the original
Ising model. Extending b to nonintegral values by analytic continuation may seem a
little strange, but it does make a kind of sense. We want to look at the incremental
change in J as a result of renormalization, with b incrementally different from 1. This
can be most easily found by taking the hyperbolic tangent of both sides of Eq.
(1.10.40), and then taking the derivative with respect to b. The result is:

(1.10.41)

Setting this equal to zero to find the fixed point of the transformation actually gives
the exact result for the phase transition.

The renormalization group gives us more information than just the location of
the phase transition. Fig. 1.10.11 shows changes that occur in the parameters as the
length scale is varied. We can use this picture to understand the behavior of the Ising
model in some detail. It shows what happens on longer length scales by the direction
of the arrows. If the flow goes toward a particular point,then we can tell that on the
longest (thermodynamic) length scale the behavior will be characterized by the be-
havior of the model at that point. By knowing how close we are to the original phase
transition, we can also learn from the renormalization group what is the length scale
at which the behavior characteristic of the phase transition will disappear. This is the
length scale at which the iterative map leaves the region of the repelling fixed point
and moves to the attracting one.

We can also ch a racteri ze the rel a ti onship bet ween sys tems at different va lu e s
of the para m eters : tem pera tu res or magn etic fiel d s . Ren orm a l i z a ti on takes us
f rom a sys tem at one va lue of J to another. Thu s , we can rel a te the beh avi or of a
s ys tem at one tem pera tu re to another by performing the ren orm a l i z a ti on for bo t h
s ys tems and stopping both at a particular va lue of J. At this point we can direct ly
rel a te properties of the two sys tem s , su ch as their free en er gi e s . Di f ferent nu m bers
of ren orm a l i z a ti on steps in the two cases mean that we are rel a ting the two sys-
tems at different scales. Su ch de s c ri pti ons of rel a ti onships of the properties of on e
s ys tem at one scale with another sys tem at a different scale are known as scaling
f u n cti ons because they de s c ri be how the properties of the sys tem ch a n ge wi t h
s c a l e .

The renormalization group was developed as an analytic tool for studying the
scaling properties of systems with spatially arrayed interacting parts.We will study an-
other use of renormalization in Section 1.10.5. Then in Section 1.10.6 we will intro-
duce a computational approach—the multigrid method.

Question 1.10.6 In this section we displayed our iterative maps graphi-
cally as flow diagrams, because in renormalization group transforma-

tions we are often interested in maps that involve more than one variable.
Make a diagram like Fig. 1.1.1 for the single variable J showing the iterative
renormalization group transformation for the two-dimensional Ising model
as given in Eq. (1.10.39).

    

d ′ J (b)

db
b=1

= J + sinh(J)cosh(J )ln(tanh(J ))
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Solution 1.10.6 See Fig. 1.10.12. The fixed point and the iterative behavior
are readily apparent. ❚

1.10.5 Renormalization and chaos
Our final example of renormalization brings us back to Section 1.1, where we studied
the properties of iterative maps and the bifurcation route to chaos. According to our
discussion, cycles of length 2k, k = 0,1,2,..., appeared as the parameter a was varied
from 0 to ac = 3.56994567, at which point chaotic behavior appeared.Fig. 1.1.3 sum-
marizes the bifurcation route to chaos.A schematic of the bifurcation part of this di-
agram is reproduced in Fig . 1.10.13. A brief review of Section 1.1 may be useful for
the following discussion.

The process of bifurcation appears to be a self-similar process in the sense that
the appearance of a 2-cycle for f (s) is repeated in the appearance of a 2-cycle for f 2(s),
but over a smaller range of a. The idea of self-similarity seems manifest in
Fig. 1.10.13, where we would only have to change the scale of magnification in the s
and a directions in order to map one bifurcation point onto the next one. While this
mapping might not work perfectly for smaller cycles, it becomes a better and better
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Figure 1.10.12 The iterative map shown as a flow diagram in Fig. 1.10.11 is shown here in
the same manner as the iterative maps in Section 1.1. On the left are shown the successive
values of J as iteration proceeds. Each iteration should be understood as a loss of detail in
the model and hence an observation of the system on a larger scale. Since in general our ob-
servations of the system are macroscopic, we typically observe the limiting behavior as the
iterations go to ∞. This is similar to considering the limiting behavior of a standard iterative
map. On the right is the graphical method of determining the iterations as discussed in
Section 1.1. The fixed points are visible as intersections of the iterating function with the di-
agonal line. ❚
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Figure 1.10.13 Schematic reproduction of Fig. 1.1.4, which shows the bifurcation route to
chaos. Successive branchings are approximately self-similar. The bottom figure shows the de-
finition of the scaling factors that relate the successive branchings. The horizontal rescaling
of the branches, δ, is given by the ratio of ∆ak to ∆ak+1. The vertical rescaling of the
branches, α, is given by the ratio of ∆sk to ∆sk+1. The top figure shows the values from which
we can obtain a first approximation to the values of and δ, by taking the ratios from the
zeroth, first and second bifurcations. The zeroth bifurcation point is actually the point a = 1.
The first bifurcation point occurs at a = 3. the second occurs at a = 1 + √6. The values of s
at the bifurcation points were obtained in Section 1.1, and formulas are indicated on the fig-
ure. When the scaling behavior of the tree is analyzed using a renormalization group treat-
ment, we focus on the tree branches that cross s = 1/2. These are indicated by bold lines in
the top figure. ❚
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approximation as the number of cycles increases. The bifurcation diagram is thus a
treelike object. This means that the sequence of bifurcation points forms a geometri-
cally converging sequence, and the width of the branches is also geometrically con-
verging. However, the distances in the s and a directions are scaled by different fac-
tors. The factors that govern the tree rescaling at each level are and , as shown in
Fig. 1.10.13 (b):

(1.10.42)

By this convention,the magnitude of both and is greater than one. is defined to
be negative because the longer branch flips up to down at every branching. The val-
ues are to be obtained by taking the limit as k → ∞ where these scale factors have well-
defined limits.

We can find a first approximation to these scaling factors by using the values at
the first and second bifurcations that we calculated in Section 1.1. These values, given
in Fig. 1.10.13, yield:

≈ (3 − 1)/(1 + √6 − 3) = 4.449 (1.10.43)

(1.10.44)

Numerically, the asymptotic value of for large k is found to be 4.6692016. This dif-
fers from our first estimate by only 5%. The numerical value for is 2.50290787,
which differs from our first estimate by a larger margin of 30%.

We can determine these constants with greater accuracy by studying directly the
properties of the functions f, f 2, . . . f 2k

. . . that are involved in the formation of 2k cy-
cles. In order to do this we modify our notation to explicitly include the dependence
of the function on the parameter a. f (s,a), f 2(s,a), etc. Note that iteration of the func-
tion f only applies to the first argument.

The tree is formed out of curves s2k (a) that are obtained by solving the fixed point
equation:

(1.10.45)

We are interested in mapping a segment of this curve between the values of s where

(1.10.46)

and

(1.10.47)
    

df 2 k

(s ,a)

ds
= −1

    

df 2 k

(s ,a)

ds
= 1

    s2k (a) = f 2
k

(s2k (a),a)

    

≈
2s1

a=3

s2
+ −s2

− 
 

 
 a=1+ 6

=
4

3

a

(a +1)(a − 3)
a=1+ 6

= 3.252

    
= lim

k →∞

∆sk

∆sk+1

    
= lim

k →∞

∆a k

∆ak +1
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onto the next function, where k is replaced everywhere by k + 1. This mapping is a
kind of renormalization process similar to that we discussed in the previous section.
In order to do this it makes sense to expand this function in a power series around an
intermediate point, which is the point where these derivatives are zero. This is known
as the superstable point of the iterative map. The superstable point is very convenient
for study, because for any value of k there is a superstable point at s = 1/2. This follows
because f(s,a) has its maximum at s = 1/2, and so its derivative is zero. By the chain
rule,the derivative of f 2k

(s ,a),is also zero. As illustrated in Fig. 1.10.13,the line at s =
1/2 intersects the bifurcation tree at every level of the hierarchy at an intermediate
point between bifurcation points. These intersection points must be superstable.

It is convenient to displace the origin of s to be at s = 1/2,and the origin of a to
be at the convergence point of the bifurcations.We thus define a function g which rep-
resents the structure of the tree. It is approximately given by:

g(s ,a) ≈ f(s + 1/2,a + ac) − 1/2 (1.10.48)

However, we would like to represent the idealized tree rather than the real tree. The
idealized tree would satisfy the scaling relation exactly at all values of a. Thus g should
be the analog of the function f which would give us an ideal tree. To find this function
we need to expand the region near a = ac by the appropriate scaling factors.
Specifically we define:

(1.10.49)

The easiest way to think about the function g (s,a) is that it is quite similar to the qua-
dratic function f(s,a) but it has the form necessary to cause the bifurcation tree to have
the ideal scaling behavior at every branching. We note that g (s,a) depends on the be-
havior of f (s,a) only very near to the point s = 1/2. This is apparent in Eq. (1.10.49)
since the region near s = 1/2 is expanded by a factor of k.

We note that g (s,a) has its maximum at s = 0. This is a consequence of the shift
in origin that we chose to make in defining it.

Our objective is to find the form of g(s,a) and,with this form,the values of and
. The trick is to recognize that what we need to know can be obtained directly from

its scaling properties. To write the scaling properties we look at the relationship be-
tween successive iterations of the map and write:

g(s,a) = g 2(s/ ,a / ) (1.10.50)

This follows either from our discussion and definition of the scaling parameters and
or directly from Eq. (1.10.49).

For convenience, we analyze Eq. (1.10.50) first in the limit a → 0. This corre-
sponds to looking at the function g (s,a) as a function of s at the limit of the bifurca-
tion sequence. This function (Fig. 1.10.14) still looks quite similar to our original
function f(s), but its specific form is different. It satisfies the relationship:

g(s,0) = g(s) = g 2(s / ) (1.10.51)

    
g(s,a) = lim

k→∞

k f 2
k

(s / k +1/2,a / k + ac) −1/2
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We approximate this function by a quadratic with no linear term because g(s) has its
maximum at s = 0:

g(s) ≈ g0 + cs2 (1.10.52)

Inserting into Eq. (1.10.51) we obtain:

g0 + cs2 ≈ (g 0 + c (g0 + c(s / )2)2) (1.10.53)

Equating separately the coefficients of the first and second terms in the expansion
gives the solution:

= 1 / (1 + cg0)

= 2cg0

(1.10.54)

We see that c and g0 only appear in the combination cg0, which means that there is one
parameter that is not determined by the scaling relationship. However, this does not
prevent us from determining . Eq. (1.10.54) can be solved to obtain:
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Figure 1.10.14 Three functions are plotted that are successive approximations to g(s) = g(s,
0). This function is essentially the limiting behavior of the quadratic iterative map f(s) at the
end of the bifurcation tree ac. The functions plotted are the first three k values inserted in
Eq. (1.10.49): f(s + 1/2, a + ac) − 1/2, af 2(s/ + 1/2, ac) − 1/2 and a2f 4(s/ 2 + 1/2, ac) −
1/2. The latter two are almost indistinguishable, indicating that the sequence of functions
converges rapidly. ❚
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cg0 = (−1 ± √3)/2 = −1.3660254

= (−1 ± √3) = −2.73205081
(1.10.55)

We have chosen the negative solutions because the value of and the value of cg0 must
be negative.

We return to consider the dependence of g(s,a,) on a to obtain a new estimate for
. Using a first-order linear dependence on a we have:

g(s,a,) ≈ g0 + cs2 + ba (1.10.56)

Inserting into Eq. (1.10.50) we have:

g0 + cs2 + ba ≈ (g0 + c(g0 + c(s / )2 + ba / )2 + ba / ) (1.10.57)

Taking only the first order term from this equation in a we have:

= 2 cg0 + = 4.73205 (1.10.58)

Eq. (1.10.55) and Eq.(1.10.58) are a significant improvement over Eq.(1.10.44) and
Eq.(1.10.43). The new value of is less than 10% from the exact value. The new value
of is less than 1.5% from the exact value. To improve the accuracy of the results, we
need only add additional terms to the expansion of g(s,a) in s. The first-order term in
a is always sufficient to obtain the corresponding value of .

It is important, and actually central to the argument in this section, that the ex-
plicit form of f (s,a) never entered into our discussion. The only assumption was that
the functional behavior near the maximum is quadratic. The rest of the argument fol-
lows independent of the form of f (s,a) because we are looking at its properties after
many iterations. These properties depend only on the region right in the vicinity of
the maximum of the function. Thus only the first-order term in the expansion of the
original function f (s,a) matters. This illustrates the notion of universality so essential
to the concept of renormalization—the behavior is controlled by very few parame-
ters. All other parameters are irrelevant—changing their values in the original itera-
tive map is irrelevant to the behavior after many iterations (many renormalizations)
of the iterative map. This is similar to the study of renormalization in models like the
Ising model, where most of the details of the behavior at small scales no longer mat-
ter on the largest scales.

1.10.6 Multigrid
The multigrid technique is designed for the solution of computational problems that
benefit from a description on multiple scales. Unlike renormalization, which is largely
an analytic tool,the multigrid method is designed specifically as a computational tool.
It works well when a problem can be approximated using a description on a coarse
lattice, but becomes more and more accurate as the finer-scale details on finer-scale
lattices are included. The idea of the method is not just to solve an equation on finer
and finer levels of description, but also to correct the coarser-scale equations based on
the finer-scale results. In this way the methodology creates an improved description
of the problem on the coarser-scale.
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The multigrid approach relies upon iterative refinement of the solution.
Solutions on coarser scales are used to approximate the solutions on finer scales. The
finer-scale solutions are then iteratively refined. However, by correcting the coarser-
scale equations,it is possible to perform most of the iterative refinement of the fine-
scale solution on the coarser scales. Thus the iterative refinement of the solution is
based both upon correction of the solution and correction of the equation. The idea
of correcting the equation is similar in many ways to the renormalization group ap-
proach. However, in this case it is a particular solution, which may be spatially de-
pendent, rather than an ensemble averaging process, which provides the correction.

We explain the multigrid approach using a conventional problem, which is the
solution of a differential equation. To solve the differential equation we will find an
approximate solution on a grid of points.Our ultimate objective is to find a solution
on a fine enough grid so that the solution is within a prespecified accuracy of the ex-
act answer. However, we will start with a much coarser grid solution and progressively
refine it to obtain more accurate results. Typically the multigrid method is applied in
two or three dimensions, where it has greater advantages than in one dimension.
However, we will describe the concepts in one dimension and leave out many of the
subtleties.

For concreteness we will assume a differential equation which is:

(1.10.59)

where g(x) is specified. The domain of the equation is specified, and boundary con-
ditions are provided for f (x) and its derivative.On a grid of equally spaced points we
might represent this equation as:

(1.10.60)

This can be written as a matrix equation:

(1.10.61)

The matrix equation can be solved for the values of f (i) by matrix inversion (using
matrix diagonalization). However, diagonalization is very costly when the matrix is
large, i.e., when there are many points in the grid.

A multigrid approach to solving this equation starts by defining a set of lattices
(grids), Lj, j ∈ {0,. . .,q}, where each successive lattice has twice as many points as the
previous one (Fig. 1.10.15). To explain the procedure it is simplest to assume that we
start with a good approximation for the solution on grid Lj −1 and we are looking for
a solution on the grid Lj . The steps taken are then:

1. Interpolate to find f j
0(i), an approximate value of the function on the finer

grid Lj.

    j
∑ A (i, j) f (j) = g(i)

    

1

d 2
( f (i +1) + f (i −1) − 2 f (i)) = g(i)

    

d 2f (x)

dx2
= g(x)
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2. Perform an iterative improvement (relaxation) of the solution on the finer grid.
This iteration involves calculating the error

(1.10.62)

where all indices refer to the grid Lj. This error is used to improve the solution on
the finer grid, as in the minimization procedures discussed in Section 1.7.5:

(1.10.63)

The scalar c is generally replaced by an approximate inverse of the matrix A(i,j)
as discussed in Section 1.7.5. This iteration captures much of the correction of
the solution at the fine-scale level; however, there are resulting corrections at
coarser levels that are not captured. Rather than continuing to iteratively improve
the solution at this fine-scale level, we move the iteration to the next coarser level.

3. Recalculate the value of the function on the coarse grid Lj −1 to obtain f 1
j –1(i). This

might be just a restriction from the fine-grid points to the coarse-grid points.
However, it often involves some more sophisticated smoothing. Ideally, it should
be such that interpolation will invert this process to obtain the values that were
found on the finer grid. The correction for the difference between the interpo-
lated and exact fine-scale results are retained.

4. Correct the va lue of g(i) on the coa rse grid using the va lues of r j(i) re s tri cted to
the coa rs er gri d . We do this so that the coa rs e - grid equ a ti on has an ex act soluti on
that is con s i s tent with the fine-grid equ a ti on . From Eq . (1.10.62) this essen ti a lly
means adding r j(i) to g(i) . The re su l ting corrected va lues we call g1

j– 1(i) .

    f1
j(i) = f0

j(i) − cr j(i)

    ′ i 
∑ A (i, ′ i ) f0

j
( ′ i ) − g(i) = r

j
(i)
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Figure 1.10.15 Illustration of four grids for a one-dimensional application of the multigrid
technique to a differential equation by the procedure illustrated in Fig. 1.10.16. ❚
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5. Relax the solution f1
j –1(i) on the coarse grid to obtain a new approximation to the

function on the coarse grid f2
j –1(i). This is done using the same procedure for re-

laxation described in step 3; however g(i) is replaced by g1
j –1(i).

The procedure of going to coarser grids in steps 3 through 5 is repeated for all
grids Lj −2, Lj −3,… till the coarsest grid, L0. The values of the function g(i) are pro-
gressively corrected by the finer-scale errors. Step 5 on the coarsest grid is re-
placed by exact solution using matrix diagonalization. The subsequent steps are
designed to bring all of the iterative refinements to the finest-scale solution.

6. Interpolate the coarse-grid solution  L0 to the finer-grid L1.

7. Add the correction that was previously saved when going from the fine to the
coarse grid.

Steps 6–7 are then repeated to take us to progressively finer-scale grids all the way
back to Lj.

This procedure is called a V-cycle since it appears as a V in a schematic that shows
the progressive movement between levels. A V-cycle starts from a relaxed solution on
grid Lj −1 and results in a relaxed solution on the grid Lj. A full multigrid procedure in-
volves starting with an exact solution at the coarsest scale L0 and then performing V-
cycles f or progressively finer grids. Such a multigrid procedure is graphically il lus-
trated in Fig. 1.10.16.
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Figure 1.10.16 The multigrid algorithm used to obtain the solution to a differential equa-
tion on the finest grid is described schematically by this sequence of operations. The opera-
tion sequence is to be read from left to right. The different grids that are being used are in-
dicated by successive horizontal lines with the coarsest grid on the bottom and the finest
grid on the top. The sequence of operations starts by solving a differential equation on the
coarsest grid by exact matrix diagonalization (shaded circle). Then iterative refinement of the
equations is performed on finer grids. When the finer-grid solutions are calculated, the
coarse-grid equations are corrected so that the iterative refinement of the fine-scale solution
can be performed on the coarse grids. This involves a V-cycle as indicated in the figure by the
boxes. The horizontal curved arrows indicate the retention of the difference between coarse-
and fine-scale solutions so that subsequent refinements can be performed. ❚
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There are several advantages of the multigrid methodology for the solution of
differential equations over more traditional integration methods that use a single-
grid representation. With careful implementation, the increasing cost of finer-scale
grids grows slowly with the number of grid points, scaling as N ln(N). The solution
of multiple problems of similar type can be even more efficient,since the corrections
of the coarse-scale equations can often be carried over to similar problems, accelerat-
ing the iterative refinement. This is in the spirit of developing universal coarse-scale
representations as discussed earlier. Finally, it is natural in this method to obtain esti-
mates of the remaining error due to limited grid density, which is important to
achieving a controlled error in the solution.

1.10.7 Levels of description, emergence of simplicity
and complexity

In our explorations of the world we have often discovered that the natural world may
be described in terms of underlying simple objects, concepts, and laws of behavior
(mechanics) and interactions. When we look still closer we see that these simple ob-
jects are composite objects whose internal structure may be complex and have a
wealth of possible behavior. Somehow, the wealth of behavior is not relevant at the
larger scale. Similarly, when we look at longer length scales than our senses normally
are attuned to, we discover that the behavior at these length scales is not affected by
objects and events that appear important to us.

Examples are found from the behavior of galaxies to elementary particles: galax-
ies are composed of suns and interstellar gases, suns are formed of complex plasmas
and are orbited by planets, planets are formed from a diversity of materials and even
life, materials and living organisms are formed of atoms,atoms are composed of nu-
clei and electrons, nuclei are composed of protons and neutrons (nucleons),and nu-
cleons appear to be composed of quarks.

Each of these represents what we may call a level of description of the world. A
level is an internally consistent picture of the behavior of interacting elements that are
simple. When taken together, many such elements may or may not have a simple be-
havior, but the rules that give rise to their collective behavior are simple.We note that
the interplay between levels is not always just a self-contained description of one level
by the level immediately below. At times we have to look at more than one level in or-
der to describe the behavior we are interested in.

The existence of these levels of description has led science to develop the notion
of fundamental law and unified theories of matter and nature. Such theories are the
self-consistent descriptions of the simple laws governing the behavior and interplay
of the entities on a particular level. The laws at a particular level then give rise to the
larger-scale behavior.

The ex i s ten ce of s i m p l i c i ty in the de s c ri pti on of u n derlying fundamental laws
is not the on ly way that simplicity arises in scien ce . The ex i s ten ce of mu l tiple lev-
els implies that simplicity can also be an em er gent property. This means that the
co ll ective beh avi or of m a ny el em en t a ry parts can beh ave simply on a mu ch larger
s c a l e .
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The study of complex systems focuses on understanding the relationship be-
tween simplicity and complexity. This requires both an understanding of the emer-
gence of complex behavior from simple elements and laws, as well as the emergence
of simplicity from simple or complex elements that allow a simple larger-scale de-
scription to exist.

Much of our discussion in this section was based upon the understanding that
macroscopic behavior of physical systems can be described or determined by only a
few relevant parameters. These parameters arise from the underlying microscopic de-
scription. However, many of the aspects of the microscopic description are irrelevant.
Different microscopic models can be used to describe the same macroscopic phe-
nomenon. The approach of scaling and renormalization does not assume that all the
details of the microscopic description become irrelevant, however, it tries to deter-
mine self-consistently which of the microscopic parameters are relevant to the macro-
scopic behavior in order to enable us to simplify our analysis and come to a better
understanding.

Whenever we are describing a simple macroscopic behavior, it is natural that the
number of microscopic parameters relevant to model this behavior must be small.
This follows directly from the simplicity of the macroscopic behavior. On the other
hand,if we describe a complex macroscopic behavior, the number of microscopic pa-
rameters that are relevant must be large.

Nevert h el e s s , we know that the ren orm a l i z a ti on group approach has some va-
l i d i ty even for com p l ex sys tem s . At long length scales, a ll of the details that occur on
the smallest length scale are not rel eva n t . The vi bra ti ons of an indivi dual atom are
not gen era lly rel evant to the beh avi or of a com p l ex bi o l ogical or ga n i s m . In deed ,
t h ere is a pattern of l evels of de s c ri pti on in the stru ctu re of com p l ex sys tem s . For
bi o l ogical or ga n i s m s , com po s ed out of a tom s , t h ere are ad d i ti onal levels of de-
s c ri pti on that are interm ed i a te bet ween atoms and the or ga n i s m : m o l ec u l e s , cell s ,
ti s su e s , or gans and sys tem s . The ex i s ten ce of these levels implies that many of t h e
details of the atomic beh avi or are not rel evant at the mac ro s copic level . This should
also be unders tood from the pers pective of the mu l ti - grid approach . In this pictu re ,
wh en we are de s c ri bing the beh avi or of a com p l ex sys tem , we have the po s s i bi l i ty of
de s c ri bing it at a very coa rse level or a finer and yet finer level . The nu m ber of l ev-
els that are nece s s a ry depends on the level of prec i s i on or level of detail we wish to
ach i eve in our de s c ri pti on . It is not alw ays nece s s a ry to de s c ri be the beh avi or in
terms of the finest scale. It is essen ti a l , h owever, to iden tify properly a model that
can captu re the essen tial underlying para m eters in order to discuss the beh avi or of
a ny sys tem .

Like biological organisms, man-made constructs are also built from levels of
structure. This method of organization is used to simplify the design and enable us to
understand and work with our own creations. For example, we can consider the con-
struction of a factory from machines and computers,machines constructed from in-
dividual moving parts, computers constructed from various components including
computer chips, chips constructed from semiconductor devices, semiconductor de-
vices composed out of regions of semiconductor and metal. Both biology and
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engineering face problems of design for function or purpose. They both make use of
interacting building blocks to engineer desired behavior and therefore construct the
complex out of the simple. The existence of these building blocks is related to the ex-
istence of levels of description for both natural and artificial systems.

Our discussion thus brings us to recognize the importance of studying the prop-
erties of substructure and its relationship to function in complex systems. This rela-
tionship will be considered in Chapter 2 in the context of our study of neural
networks.
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