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When we observe the largest scale behaviors of a system, we
simplify the mathematical description of the system because
there are fewer distinguishable states, and only a limited set
of possible behaviors. This also means that systems that look
different on a microscopic scale may not look different at the
macroscopic scale, and their mathematical descriptions be-
come the same.

An important example of this arose in the study of phase
transitions using the new mathematics of renormalization
group. The transition when boiling a liquid to a gas has
the same properties as the one that occurs when a heating a
magnet up to the point where it becomes non-magnetic (fer-
romagnet to paramagnetic transition). Magnets have local
magnetizations that fluctuate and interact at a critical point
just like local changes of density at the water to vapor critical
point. The result is that these two seemingly different types
of systems map mathematically onto each other.

As renormalization group was more widely applied, other
instances were found of systems that have the same behav-
ior even though they differ in detail, a concept that became
referred to as universality. Still, while many systems have
the same behavior, there are multiple distinct behaviors. To-
gether this means that systems fall into classes of behaviors,
leading to the term ‘universality class.’ Since renormaliza-
tion group focuses on how behaviors transform across scales
leading to power laws, the value of the power law exponent
became used as a signature of the universality class.

In a sense, the idea that many systems can be described
by the same large scale behavior is used in traditional the-
ory. Scientists use the normal distribution for many different
biological and social systems. Any system having sufficiently
independent components, satisfies the axioms of the central
limit theorem, and therefore can be described by the normal
distribution. When there are dependencies, the normal distri-
bution no longer applies, but there are other behaviors that
are characteristic of other kinds of dependencies. To study
those behaviors, we have to determine the way different kinds
of dependencies give rise to kinds of large scale behavior.

There are even more basic ways a common mathematical
description of systems is used, e.g., point particle motion de-
scribes the motion of many distinct objects, and wave equa-
tions describe everything from music strings to water waves
to light. Even though the specific systems are very different,
the dependencies that give rise to their behaviors, and the
behaviors themselves, are related mathematically.

How does universality work for complex systems? Un-
like traditional renormalization group, we do not consider the
limit of infinite size and power law exponents. Instead, the
states of our representation must correspond to the states of
the system at the scale of observation. Moreover, instead of
describing the equilibrium energy, we describe dynamics and
system response. The mathematical representation of one sys-
tem at a particular scale may correspond to the behavior of
other systems despite different underlying components. This
is a general concept of universality (Fig. 1).

What are the cases where the thermodynamic limit does
not serve to expose universality? An important example is
pattern formation that results in spots and stripes, like those
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FIG. 1: When we focus on the largest scale, system be-
haviors map onto simplified models, each of which applies
to a large set of possible systems with widely different mi-
croscopic details. Examples shown in this figure: the Gaus-
sian distribution, wave motion, order to disorder transitions,
Turing patterns, fluid flow described by Navier-Stokes equa-
tions, attractor dynamics. That only a few models capture
the behavior of a wide range of systems underlies the idea of
universality—systems are members of universality classes of
behavior.

on predator and prey animals. This type of pattern forma-
tion was described by Alan Turing and are called Turing pat-
terns (Fig. 1). They arise in many ways, for example from
the reaction of diffusing chemical species. If we think about
what happens with a very large pattern we see that at large
enough scales, these patterns look only gray. Still, we can
map these descriptions from system to system. The patterns
represent universal classes of behavior. Microscopic changes
only change the pattern to the extent that they change the
relevant parameters of those patterns.

The adoption of Turing’s ideas in biology for patterns on
animal skins has been controversial precisely because the
pattern dynamics does not capture microscopic mechanisms.
This controversy misses the key point about universality. Uni-
versality should be intuitive as we don’t need to describe the
molecular processes to characterize the variation between pat-
terns on species, or individual members of a species, or the
dynamics of a pattern as it forms, and do not affect roles of
these patterns in social and ecological interactions. This is
similar to the ability to describe planetary motion without
describing details of individual planet structure.

The study of universality enables us to identify classes of

systems whose behaviors can be described the same way by a

common mathematical model. This is the principle of univer-

sality that is formalized by renormalization group and gener-

alized by multiscale information theory to the scientific study

of complex systems.


